tesseract  4.00.00dev
kdtree.cpp
Go to the documentation of this file.
1 /******************************************************************************
2  ** Filename: kdtree.cpp
3  ** Purpose: Routines for managing K-D search trees
4  ** Author: Dan Johnson
5  ** History: 3/10/89, DSJ, Created.
6  ** 5/23/89, DSJ, Added circular feature capability.
7  ** 7/13/89, DSJ, Made tree nodes invisible to outside.
8  **
9  ** (c) Copyright Hewlett-Packard Company, 1988.
10  ** Licensed under the Apache License, Version 2.0 (the "License");
11  ** you may not use this file except in compliance with the License.
12  ** You may obtain a copy of the License at
13  ** http://www.apache.org/licenses/LICENSE-2.0
14  ** Unless required by applicable law or agreed to in writing, software
15  ** distributed under the License is distributed on an "AS IS" BASIS,
16  ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17  ** See the License for the specific language governing permissions and
18  ** limitations under the License.
19  ******************************************************************************/
20 
21 /*-----------------------------------------------------------------------------
22  Include Files and Type Defines
23 -----------------------------------------------------------------------------*/
24 #include "kdtree.h"
25 #include "const.h"
26 #include "emalloc.h"
27 #include <stdio.h>
28 #include <math.h>
29 
30 #define Magnitude(X) ((X) < 0 ? -(X) : (X))
31 #define NodeFound(N,K,D) (( (N)->Key == (K) ) && ( (N)->Data == (D) ))
32 
33 /*-----------------------------------------------------------------------------
34  Global Data Definitions and Declarations
35 -----------------------------------------------------------------------------*/
36 #define MINSEARCH -MAX_FLOAT32
37 #define MAXSEARCH MAX_FLOAT32
38 
39 // Helper function to find the next essential dimension in a cycle.
40 static int NextLevel(KDTREE *tree, int level) {
41  do {
42  ++level;
43  if (level >= tree->KeySize)
44  level = 0;
45  } while (tree->KeyDesc[level].NonEssential);
46  return level;
47 }
48 
49 //-----------------------------------------------------------------------------
51 template<typename Key, typename Value>
52 class MinK {
53  public:
54  MinK(Key max_key, int k);
55  ~MinK();
56 
57  struct Element {
58  Element() {}
59  Element(const Key& k, const Value& v) : key(k), value(v) {}
60 
61  Key key;
62  Value value;
63  };
64 
65  bool insert(Key k, Value v);
66  const Key& max_insertable_key();
67 
68  int elements_count() { return elements_count_; }
69  const Element* elements() { return elements_; }
70 
71  private:
72  const Key max_key_; //< the maximum possible Key
73  Element *elements_; //< unsorted array of elements
74  int elements_count_; //< the number of results collected so far
75  int k_; //< the number of results we want from the search
76  int max_index_; //< the index of the result with the largest key
77 };
78 
79 template<typename Key, typename Value>
80 MinK<Key, Value>::MinK(Key max_key, int k) :
81  max_key_(max_key), elements_count_(0), k_(k < 1 ? 1 : k), max_index_(0) {
82  elements_ = new Element[k_];
83 }
84 
85 template<typename Key, typename Value>
87  delete []elements_;
88 }
89 
90 template<typename Key, typename Value>
92  if (elements_count_ < k_)
93  return max_key_;
94  return elements_[max_index_].key;
95 }
96 
97 template<typename Key, typename Value>
98 bool MinK<Key, Value>::insert(Key key, Value value) {
99  if (elements_count_ < k_) {
100  elements_[elements_count_++] = Element(key, value);
101  if (key > elements_[max_index_].key)
102  max_index_ = elements_count_ - 1;
103  return true;
104  } else if (key < elements_[max_index_].key) {
105  // evict the largest element.
106  elements_[max_index_] = Element(key, value);
107  // recompute max_index_
108  for (int i = 0; i < elements_count_; i++) {
109  if (elements_[i].key > elements_[max_index_].key)
110  max_index_ = i;
111  }
112  return true;
113  }
114  return false;
115 }
116 
117 
118 //-----------------------------------------------------------------------------
122  public:
123  KDTreeSearch(KDTREE* tree, FLOAT32 *query_point, int k_closest);
124  ~KDTreeSearch();
125 
127  void Search(int *result_count, FLOAT32 *distances, void **results);
128 
129  private:
130  void SearchRec(int Level, KDNODE *SubTree);
131  bool BoxIntersectsSearch(FLOAT32 *lower, FLOAT32 *upper);
132 
133  KDTREE *tree_;
134  FLOAT32 *query_point_;
135  FLOAT32 *sb_min_; //< search box minimum
136  FLOAT32 *sb_max_; //< search box maximum
137  MinK<FLOAT32, void *> results_;
138 };
139 
140 KDTreeSearch::KDTreeSearch(KDTREE *tree, FLOAT32 *query_point, int k_closest)
141  : tree_(tree), query_point_(query_point), results_(MAXSEARCH, k_closest) {
142  sb_min_ = new FLOAT32[tree->KeySize];
143  sb_max_ = new FLOAT32[tree->KeySize];
144 }
145 
147  delete[] sb_min_;
148  delete[] sb_max_;
149 }
150 
153 void KDTreeSearch::Search(int *result_count,
154  FLOAT32 *distances,
155  void **results) {
156  if (tree_->Root.Left == NULL) {
157  *result_count = 0;
158  } else {
159  for (int i = 0; i < tree_->KeySize; i++) {
160  sb_min_[i] = tree_->KeyDesc[i].Min;
161  sb_max_[i] = tree_->KeyDesc[i].Max;
162  }
163  SearchRec(0, tree_->Root.Left);
164  int count = results_.elements_count();
165  *result_count = count;
166  for (int j = 0; j < count; j++) {
167  // Pre-cast to float64 as key is a template type and we have no control
168  // over its actual type.
169  distances[j] = (FLOAT32)sqrt((FLOAT64)results_.elements()[j].key);
170  results[j] = results_.elements()[j].value;
171  }
172  }
173 }
174 
175 /*-----------------------------------------------------------------------------
176  Public Code
177 -----------------------------------------------------------------------------*/
181 KDTREE *MakeKDTree(inT16 KeySize, const PARAM_DESC KeyDesc[]) {
182  KDTREE *KDTree = (KDTREE *) Emalloc(
183  sizeof(KDTREE) + (KeySize - 1) * sizeof(PARAM_DESC));
184  for (int i = 0; i < KeySize; i++) {
185  KDTree->KeyDesc[i].NonEssential = KeyDesc[i].NonEssential;
186  KDTree->KeyDesc[i].Circular = KeyDesc[i].Circular;
187  if (KeyDesc[i].Circular) {
188  KDTree->KeyDesc[i].Min = KeyDesc[i].Min;
189  KDTree->KeyDesc[i].Max = KeyDesc[i].Max;
190  KDTree->KeyDesc[i].Range = KeyDesc[i].Max - KeyDesc[i].Min;
191  KDTree->KeyDesc[i].HalfRange = KDTree->KeyDesc[i].Range / 2;
192  KDTree->KeyDesc[i].MidRange = (KeyDesc[i].Max + KeyDesc[i].Min) / 2;
193  } else {
194  KDTree->KeyDesc[i].Min = MINSEARCH;
195  KDTree->KeyDesc[i].Max = MAXSEARCH;
196  }
197  }
198  KDTree->KeySize = KeySize;
199  KDTree->Root.Left = NULL;
200  KDTree->Root.Right = NULL;
201  return KDTree;
202 }
203 
204 
217 void KDStore(KDTREE *Tree, FLOAT32 *Key, void *Data) {
218  int Level;
219  KDNODE *Node;
220  KDNODE **PtrToNode;
221 
222  PtrToNode = &(Tree->Root.Left);
223  Node = *PtrToNode;
224  Level = NextLevel(Tree, -1);
225  while (Node != NULL) {
226  if (Key[Level] < Node->BranchPoint) {
227  PtrToNode = &(Node->Left);
228  if (Key[Level] > Node->LeftBranch)
229  Node->LeftBranch = Key[Level];
230  }
231  else {
232  PtrToNode = &(Node->Right);
233  if (Key[Level] < Node->RightBranch)
234  Node->RightBranch = Key[Level];
235  }
236  Level = NextLevel(Tree, Level);
237  Node = *PtrToNode;
238  }
239 
240  *PtrToNode = MakeKDNode(Tree, Key, (void *) Data, Level);
241 } /* KDStore */
242 
262 void
263 KDDelete (KDTREE * Tree, FLOAT32 Key[], void *Data) {
264  int Level;
265  KDNODE *Current;
266  KDNODE *Father;
267 
268  /* initialize search at root of tree */
269  Father = &(Tree->Root);
270  Current = Father->Left;
271  Level = NextLevel(Tree, -1);
272 
273  /* search tree for node to be deleted */
274  while ((Current != NULL) && (!NodeFound (Current, Key, Data))) {
275  Father = Current;
276  if (Key[Level] < Current->BranchPoint)
277  Current = Current->Left;
278  else
279  Current = Current->Right;
280 
281  Level = NextLevel(Tree, Level);
282  }
283 
284  if (Current != NULL) { /* if node to be deleted was found */
285  if (Current == Father->Left) {
286  Father->Left = NULL;
287  Father->LeftBranch = Tree->KeyDesc[Level].Min;
288  } else {
289  Father->Right = NULL;
290  Father->RightBranch = Tree->KeyDesc[Level].Max;
291  }
292 
293  InsertNodes(Tree, Current->Left);
294  InsertNodes(Tree, Current->Right);
295  FreeSubTree(Current);
296  }
297 } /* KDDelete */
298 
320  KDTREE *Tree, FLOAT32 Query[], int QuerySize, FLOAT32 MaxDistance,
321  int *NumberOfResults, void **NBuffer, FLOAT32 DBuffer[]) {
322  KDTreeSearch search(Tree, Query, QuerySize);
323  search.Search(NumberOfResults, DBuffer, NBuffer);
324 }
325 
326 
327 /*---------------------------------------------------------------------------*/
329 void KDWalk(KDTREE *Tree, void_proc action, void *context) {
330  if (Tree->Root.Left != NULL)
331  Walk(Tree, action, context, Tree->Root.Left, NextLevel(Tree, -1));
332 }
333 
334 
335 /*---------------------------------------------------------------------------*/
348 void FreeKDTree(KDTREE *Tree) {
349  FreeSubTree(Tree->Root.Left);
350  free(Tree);
351 } /* FreeKDTree */
352 
353 
354 /*-----------------------------------------------------------------------------
355  Private Code
356 -----------------------------------------------------------------------------*/
357 /*---------------------------------------------------------------------------*/
371 KDNODE *MakeKDNode(KDTREE *tree, FLOAT32 Key[], void *Data, int Index) {
372  KDNODE *NewNode;
373 
374  NewNode = (KDNODE *) Emalloc (sizeof (KDNODE));
375 
376  NewNode->Key = Key;
377  NewNode->Data = Data;
378  NewNode->BranchPoint = Key[Index];
379  NewNode->LeftBranch = tree->KeyDesc[Index].Min;
380  NewNode->RightBranch = tree->KeyDesc[Index].Max;
381  NewNode->Left = NULL;
382  NewNode->Right = NULL;
383 
384  return NewNode;
385 } /* MakeKDNode */
386 
387 
388 /*---------------------------------------------------------------------------*/
389 void FreeKDNode(KDNODE *Node) { free(Node); }
390 
391 /*---------------------------------------------------------------------------*/
397 void KDTreeSearch::SearchRec(int level, KDNODE *sub_tree) {
398  if (level >= tree_->KeySize)
399  level = 0;
400 
401  if (!BoxIntersectsSearch(sb_min_, sb_max_))
402  return;
403 
404  results_.insert(DistanceSquared(tree_->KeySize, tree_->KeyDesc, query_point_,
405  sub_tree->Key),
406  sub_tree->Data);
407 
408  if (query_point_[level] < sub_tree->BranchPoint) {
409  if (sub_tree->Left != NULL) {
410  FLOAT32 tmp = sb_max_[level];
411  sb_max_[level] = sub_tree->LeftBranch;
412  SearchRec(NextLevel(tree_, level), sub_tree->Left);
413  sb_max_[level] = tmp;
414  }
415  if (sub_tree->Right != NULL) {
416  FLOAT32 tmp = sb_min_[level];
417  sb_min_[level] = sub_tree->RightBranch;
418  SearchRec(NextLevel(tree_, level), sub_tree->Right);
419  sb_min_[level] = tmp;
420  }
421  } else {
422  if (sub_tree->Right != NULL) {
423  FLOAT32 tmp = sb_min_[level];
424  sb_min_[level] = sub_tree->RightBranch;
425  SearchRec(NextLevel(tree_, level), sub_tree->Right);
426  sb_min_[level] = tmp;
427  }
428  if (sub_tree->Left != NULL) {
429  FLOAT32 tmp = sb_max_[level];
430  sb_max_[level] = sub_tree->LeftBranch;
431  SearchRec(NextLevel(tree_, level), sub_tree->Left);
432  sb_max_[level] = tmp;
433  }
434  }
435 }
436 
437 
438 /*---------------------------------------------------------------------------*/
447  FLOAT32 total_distance = 0;
448 
449  for (; k > 0; k--, p1++, p2++, dim++) {
450  if (dim->NonEssential)
451  continue;
452 
453  FLOAT32 dimension_distance = *p1 - *p2;
454 
455  /* if this dimension is circular - check wraparound distance */
456  if (dim->Circular) {
457  dimension_distance = Magnitude(dimension_distance);
458  FLOAT32 wrap_distance = dim->Max - dim->Min - dimension_distance;
459  dimension_distance = MIN(dimension_distance, wrap_distance);
460  }
461 
462  total_distance += dimension_distance * dimension_distance;
463  }
464  return total_distance;
465 }
466 
468  return sqrt(DistanceSquared(k, dim, p1, p2));
469 }
470 
471 /*---------------------------------------------------------------------------*/
476 bool KDTreeSearch::BoxIntersectsSearch(FLOAT32 *lower, FLOAT32 *upper) {
477  FLOAT32 *query = query_point_;
478  // Compute the sum in higher precision.
479  FLOAT64 total_distance = 0.0;
480  FLOAT64 radius_squared =
481  results_.max_insertable_key() * results_.max_insertable_key();
482  PARAM_DESC *dim = tree_->KeyDesc;
483 
484  for (int i = tree_->KeySize; i > 0; i--, dim++, query++, lower++, upper++) {
485  if (dim->NonEssential)
486  continue;
487 
488  FLOAT32 dimension_distance;
489  if (*query < *lower)
490  dimension_distance = *lower - *query;
491  else if (*query > *upper)
492  dimension_distance = *query - *upper;
493  else
494  dimension_distance = 0;
495 
496  /* if this dimension is circular - check wraparound distance */
497  if (dim->Circular) {
498  FLOAT32 wrap_distance = MAX_FLOAT32;
499  if (*query < *lower)
500  wrap_distance = *query + dim->Max - dim->Min - *upper;
501  else if (*query > *upper)
502  wrap_distance = *lower - (*query - (dim->Max - dim->Min));
503  dimension_distance = MIN(dimension_distance, wrap_distance);
504  }
505 
506  total_distance += dimension_distance * dimension_distance;
507  if (total_distance >= radius_squared)
508  return FALSE;
509  }
510  return TRUE;
511 }
512 
513 
514 /*---------------------------------------------------------------------------*/
530 void Walk(KDTREE *tree, void_proc action, void *context,
531  KDNODE *sub_tree, inT32 level) {
532  (*action)(context, sub_tree->Data, level);
533  if (sub_tree->Left != NULL)
534  Walk(tree, action, context, sub_tree->Left, NextLevel(tree, level));
535  if (sub_tree->Right != NULL)
536  Walk(tree, action, context, sub_tree->Right, NextLevel(tree, level));
537 }
538 
540 void InsertNodes(KDTREE *tree, KDNODE *nodes) {
541  if (nodes == NULL)
542  return;
543 
544  KDStore(tree, nodes->Key, nodes->Data);
545  InsertNodes(tree, nodes->Left);
546  InsertNodes(tree, nodes->Right);
547 }
548 
550 void FreeSubTree(KDNODE *sub_tree) {
551  if (sub_tree != NULL) {
552  FreeSubTree(sub_tree->Left);
553  FreeSubTree(sub_tree->Right);
554  free(sub_tree);
555  }
556 }
KDNODE * MakeKDNode(KDTREE *tree, FLOAT32 Key[], void *Data, int Index)
Definition: kdtree.cpp:371
#define MIN(x, y)
Definition: ndminx.h:28
#define Magnitude(X)
Definition: kdtree.cpp:30
~MinK()
Definition: kdtree.cpp:86
#define TRUE
Definition: capi.h:45
#define NodeFound(N, K, D)
Definition: kdtree.cpp:31
const Element * elements()
Definition: kdtree.cpp:69
void KDStore(KDTREE *Tree, FLOAT32 *Key, void *Data)
Definition: kdtree.cpp:217
MinK(Key max_key, int k)
Definition: kdtree.cpp:80
inT8 NonEssential
Definition: ocrfeatures.h:48
FLOAT32 MidRange
Definition: ocrfeatures.h:53
FLOAT32 RightBranch
Definition: kdtree.h:44
struct KDNODE * Left
Definition: kdtree.h:45
KDNODE Root
Definition: kdtree.h:51
int16_t inT16
Definition: host.h:36
#define MINSEARCH
Definition: kdtree.cpp:36
FLOAT32 Min
Definition: ocrfeatures.h:49
Definition: kdtree.h:49
const Key & max_insertable_key()
Definition: kdtree.cpp:91
FLOAT32 LeftBranch
Definition: kdtree.h:43
bool insert(Key k, Value v)
Definition: kdtree.cpp:98
void InsertNodes(KDTREE *tree, KDNODE *nodes)
Definition: kdtree.cpp:540
int count(LIST var_list)
Definition: oldlist.cpp:103
void FreeKDNode(KDNODE *Node)
Definition: kdtree.cpp:389
void KDDelete(KDTREE *Tree, FLOAT32 Key[], void *Data)
Definition: kdtree.cpp:263
void FreeSubTree(KDNODE *sub_tree)
Definition: kdtree.cpp:550
FLOAT32 Range
Definition: ocrfeatures.h:51
void FreeKDTree(KDTREE *Tree)
Definition: kdtree.cpp:348
#define MAXSEARCH
Definition: kdtree.cpp:37
LIST search(LIST list, void *key, int_compare is_equal)
Definition: oldlist.cpp:371
#define FALSE
Definition: capi.h:46
KDTREE * MakeKDTree(inT16 KeySize, const PARAM_DESC KeyDesc[])
Definition: kdtree.cpp:181
inT8 Circular
Definition: ocrfeatures.h:47
inT16 KeySize
Definition: kdtree.h:50
FLOAT32 Max
Definition: ocrfeatures.h:50
int32_t inT32
Definition: host.h:38
void Search(int *result_count, FLOAT32 *distances, void **results)
Definition: kdtree.cpp:153
void * Data
Definition: kdtree.h:41
Definition: kdtree.h:39
FLOAT32 * Key
Definition: kdtree.h:40
Definition: kdtree.cpp:52
FLOAT32 HalfRange
Definition: ocrfeatures.h:52
Value value
Definition: kdtree.cpp:62
void(* void_proc)(...)
Definition: cutil.h:66
void KDNearestNeighborSearch(KDTREE *Tree, FLOAT32 Query[], int QuerySize, FLOAT32 MaxDistance, int *NumberOfResults, void **NBuffer, FLOAT32 DBuffer[])
Definition: kdtree.cpp:319
FLOAT32 ComputeDistance(int k, PARAM_DESC *dim, FLOAT32 p1[], FLOAT32 p2[])
Definition: kdtree.cpp:467
PARAM_DESC KeyDesc[1]
Definition: kdtree.h:52
void Walk(KDTREE *tree, void_proc action, void *context, KDNODE *sub_tree, inT32 level)
Definition: kdtree.cpp:530
int elements_count()
Definition: kdtree.cpp:68
FLOAT32 BranchPoint
Definition: kdtree.h:42
void * Emalloc(int Size)
Definition: emalloc.cpp:47
Element(const Key &k, const Value &v)
Definition: kdtree.cpp:59
FLOAT32 DistanceSquared(int k, PARAM_DESC *dim, FLOAT32 p1[], FLOAT32 p2[])
Definition: kdtree.cpp:446
float FLOAT32
Definition: host.h:42
struct KDNODE * Right
Definition: kdtree.h:46
void KDWalk(KDTREE *Tree, void_proc action, void *context)
Definition: kdtree.cpp:329
#define MAX_FLOAT32
Definition: host.h:66
KDTreeSearch(KDTREE *tree, FLOAT32 *query_point, int k_closest)
Definition: kdtree.cpp:140
double FLOAT64
Definition: host.h:43