tesseract  4.00.00dev
trie.cpp
Go to the documentation of this file.
1 /* -*-C-*-
2  ********************************************************************************
3  *
4  * File: trie.cpp (Formerly trie.c)
5  * Description: Functions to build a trie data structure.
6  * Author: Mark Seaman, OCR Technology
7  * Created: Fri Oct 16 14:37:00 1987
8  * Modified: Fri Jul 26 12:18:10 1991 (Mark Seaman) marks@hpgrlt
9  * Language: C
10  * Package: N/A
11  * Status: Reusable Software Component
12  *
13  * (c) Copyright 1987, Hewlett-Packard Company.
14  ** Licensed under the Apache License, Version 2.0 (the "License");
15  ** you may not use this file except in compliance with the License.
16  ** You may obtain a copy of the License at
17  ** http://www.apache.org/licenses/LICENSE-2.0
18  ** Unless required by applicable law or agreed to in writing, software
19  ** distributed under the License is distributed on an "AS IS" BASIS,
20  ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21  ** See the License for the specific language governing permissions and
22  ** limitations under the License.
23  *
24  *********************************************************************************/
25 /*----------------------------------------------------------------------
26  I n c l u d e s
27 ----------------------------------------------------------------------*/
28 #ifdef _MSC_VER
29 #pragma warning(disable:4244) // Conversion warnings
30 #pragma warning(disable:4800) // int/bool warnings
31 #endif
32 #include "trie.h"
33 
34 #include "callcpp.h"
35 #include "dawg.h"
36 #include "dict.h"
37 #include "genericvector.h"
38 #include "helpers.h"
39 #include "kdpair.h"
40 
41 namespace tesseract {
42 
43 const char kDoNotReverse[] = "RRP_DO_NO_REVERSE";
44 const char kReverseIfHasRTL[] = "RRP_REVERSE_IF_HAS_RTL";
45 const char kForceReverse[] = "RRP_FORCE_REVERSE";
46 
47 const char * const RTLReversePolicyNames[] = {
50  kForceReverse
51 };
52 
53 const char Trie::kAlphaPatternUnicode[] = "\u2000";
54 const char Trie::kDigitPatternUnicode[] = "\u2001";
55 const char Trie::kAlphanumPatternUnicode[] = "\u2002";
56 const char Trie::kPuncPatternUnicode[] = "\u2003";
57 const char Trie::kLowerPatternUnicode[] = "\u2004";
58 const char Trie::kUpperPatternUnicode[] = "\u2005";
59 
60 const char *Trie::get_reverse_policy_name(RTLReversePolicy reverse_policy) {
61  return RTLReversePolicyNames[reverse_policy];
62 }
63 
64 // Reset the Trie to empty.
65 void Trie::clear() {
67  nodes_.clear();
69  num_edges_ = 0;
70  new_dawg_node(); // Need to allocate node 0.
71 }
72 
74  int direction, bool word_end, UNICHAR_ID unichar_id,
75  EDGE_RECORD **edge_ptr, EDGE_INDEX *edge_index) const {
76  if (debug_level_ == 3) {
77  tprintf("edge_char_of() given node_ref " REFFORMAT " next_node " REFFORMAT
78  " direction %d word_end %d unichar_id %d, exploring node:\n",
79  node_ref, next_node, direction, word_end, unichar_id);
80  if (node_ref != NO_EDGE) {
81  print_node(node_ref, nodes_[node_ref]->forward_edges.size());
82  }
83  }
84  if (node_ref == NO_EDGE) return false;
85  assert(node_ref < nodes_.size());
86  EDGE_VECTOR &vec = (direction == FORWARD_EDGE) ?
87  nodes_[node_ref]->forward_edges : nodes_[node_ref]->backward_edges;
88  int vec_size = vec.size();
89  if (node_ref == 0 && direction == FORWARD_EDGE) { // binary search
90  EDGE_INDEX start = 0;
91  EDGE_INDEX end = vec_size - 1;
92  EDGE_INDEX k;
93  int compare;
94  while (start <= end) {
95  k = (start + end) >> 1; // (start + end) / 2
96  compare = given_greater_than_edge_rec(next_node, word_end,
97  unichar_id, vec[k]);
98  if (compare == 0) { // given == vec[k]
99  *edge_ptr = &(vec[k]);
100  *edge_index = k;
101  return true;
102  } else if (compare == 1) { // given > vec[k]
103  start = k + 1;
104  } else { // given < vec[k]
105  end = k - 1;
106  }
107  }
108  } else { // linear search
109  for (int i = 0; i < vec_size; ++i) {
110  EDGE_RECORD &edge_rec = vec[i];
111  if (edge_rec_match(next_node, word_end, unichar_id,
112  next_node_from_edge_rec(edge_rec),
113  end_of_word_from_edge_rec(edge_rec),
114  unichar_id_from_edge_rec(edge_rec))) {
115  *edge_ptr = &(edge_rec);
116  *edge_index = i;
117  return true;
118  }
119  }
120  }
121  return false; // not found
122 }
123 
124 bool Trie::add_edge_linkage(NODE_REF node1, NODE_REF node2, bool marker_flag,
125  int direction, bool word_end,
126  UNICHAR_ID unichar_id) {
127  EDGE_VECTOR *vec = (direction == FORWARD_EDGE) ?
128  &(nodes_[node1]->forward_edges) : &(nodes_[node1]->backward_edges);
129  int search_index;
130  if (node1 == 0 && direction == FORWARD_EDGE) {
131  search_index = 0; // find the index to make the add sorted
132  while (search_index < vec->size() &&
133  given_greater_than_edge_rec(node2, word_end, unichar_id,
134  (*vec)[search_index]) == 1) {
135  search_index++;
136  }
137  } else {
138  search_index = vec->size(); // add is unsorted, so index does not matter
139  }
140  EDGE_RECORD edge_rec;
141  link_edge(&edge_rec, node2, marker_flag, direction, word_end, unichar_id);
142  if (node1 == 0 && direction == BACKWARD_EDGE &&
144  EDGE_INDEX edge_index = root_back_freelist_.pop_back();
145  (*vec)[edge_index] = edge_rec;
146  } else if (search_index < vec->size()) {
147  vec->insert(edge_rec, search_index);
148  } else {
149  vec->push_back(edge_rec);
150  }
151  if (debug_level_ > 1) {
152  tprintf("new edge in nodes_[" REFFORMAT "]: ", node1);
153  print_edge_rec(edge_rec);
154  tprintf("\n");
155  }
156  num_edges_++;
157  return true;
158 }
159 
161  NODE_REF the_next_node,
162  bool marker_flag,
163  UNICHAR_ID unichar_id) {
164  EDGE_RECORD *back_edge_ptr;
165  EDGE_INDEX back_edge_index;
166  ASSERT_HOST(edge_char_of(the_next_node, NO_EDGE, BACKWARD_EDGE, false,
167  unichar_id, &back_edge_ptr, &back_edge_index));
168  if (marker_flag) {
169  *back_edge_ptr |= (MARKER_FLAG << flag_start_bit_);
170  *edge_ptr |= (MARKER_FLAG << flag_start_bit_);
171  }
172  // Mark both directions as end of word.
173  *back_edge_ptr |= (WERD_END_FLAG << flag_start_bit_);
174  *edge_ptr |= (WERD_END_FLAG << flag_start_bit_);
175 }
176 
178  const GenericVector<bool> *repetitions) {
179  if (word.length() <= 0) return false; // can't add empty words
180  if (repetitions != NULL) ASSERT_HOST(repetitions->size() == word.length());
181  // Make sure the word does not contain invalid unchar ids.
182  for (int i = 0; i < word.length(); ++i) {
183  if (word.unichar_id(i) < 0 ||
184  word.unichar_id(i) >= unicharset_size_) return false;
185  }
186 
187  EDGE_RECORD *edge_ptr;
188  NODE_REF last_node = 0;
189  NODE_REF the_next_node;
190  bool marker_flag = false;
191  EDGE_INDEX edge_index;
192  int i;
193  inT32 still_finding_chars = true;
194  inT32 word_end = false;
195  bool add_failed = false;
196  bool found;
197 
198  if (debug_level_ > 1) word.print("\nAdding word: ");
199 
200  UNICHAR_ID unichar_id;
201  for (i = 0; i < word.length() - 1; ++i) {
202  unichar_id = word.unichar_id(i);
203  marker_flag = (repetitions != NULL) ? (*repetitions)[i] : false;
204  if (debug_level_ > 1) tprintf("Adding letter %d\n", unichar_id);
205  if (still_finding_chars) {
206  found = edge_char_of(last_node, NO_EDGE, FORWARD_EDGE, word_end,
207  unichar_id, &edge_ptr, &edge_index);
208  if (found && debug_level_ > 1) {
209  tprintf("exploring edge " REFFORMAT " in node " REFFORMAT "\n",
210  edge_index, last_node);
211  }
212  if (!found) {
213  still_finding_chars = false;
214  } else if (next_node_from_edge_rec(*edge_ptr) == 0) {
215  // We hit the end of an existing word, but the new word is longer.
216  // In this case we have to disconnect the existing word from the
217  // backwards root node, mark the current position as end-of-word
218  // and add new nodes for the increased length. Disconnecting the
219  // existing word from the backwards root node requires a linear
220  // search, so it is much faster to add the longest words first,
221  // to avoid having to come here.
222  word_end = true;
223  still_finding_chars = false;
224  remove_edge(last_node, 0, word_end, unichar_id);
225  } else {
226  // We have to add a new branch here for the new word.
227  if (marker_flag) set_marker_flag_in_edge_rec(edge_ptr);
228  last_node = next_node_from_edge_rec(*edge_ptr);
229  }
230  }
231  if (!still_finding_chars) {
232  the_next_node = new_dawg_node();
233  if (debug_level_ > 1)
234  tprintf("adding node " REFFORMAT "\n", the_next_node);
235  if (the_next_node == 0) {
236  add_failed = true;
237  break;
238  }
239  if (!add_new_edge(last_node, the_next_node,
240  marker_flag, word_end, unichar_id)) {
241  add_failed = true;
242  break;
243  }
244  word_end = false;
245  last_node = the_next_node;
246  }
247  }
248  the_next_node = 0;
249  unichar_id = word.unichar_id(i);
250  marker_flag = (repetitions != NULL) ? (*repetitions)[i] : false;
251  if (debug_level_ > 1) tprintf("Adding letter %d\n", unichar_id);
252  if (still_finding_chars &&
253  edge_char_of(last_node, NO_EDGE, FORWARD_EDGE, false,
254  unichar_id, &edge_ptr, &edge_index)) {
255  // An extension of this word already exists in the trie, so we
256  // only have to add the ending flags in both directions.
257  add_word_ending(edge_ptr, next_node_from_edge_rec(*edge_ptr),
258  marker_flag, unichar_id);
259  } else {
260  // Add a link to node 0. All leaves connect to node 0 so the back links can
261  // be used in reduction to a dawg. This root backward node has one edge
262  // entry for every word, (except prefixes of longer words) so it is huge.
263  if (!add_failed &&
264  !add_new_edge(last_node, the_next_node, marker_flag, true, unichar_id))
265  add_failed = true;
266  }
267  if (add_failed) {
268  tprintf("Re-initializing document dictionary...\n");
269  clear();
270  return false;
271  } else {
272  return true;
273  }
274 }
275 
277  TRIE_NODE_RECORD *node = new TRIE_NODE_RECORD();
278  nodes_.push_back(node);
279  return nodes_.length() - 1;
280 }
281 
282 // Sort function to sort words by decreasing order of length.
283 static int sort_strings_by_dec_length(const void* v1, const void* v2) {
284  const STRING *s1 = static_cast<const STRING *>(v1);
285  const STRING *s2 = static_cast<const STRING *>(v2);
286  return s2->length() - s1->length();
287 }
288 
290  const UNICHARSET &unicharset,
291  Trie::RTLReversePolicy reverse_policy) {
292  GenericVector<STRING> word_list;
293  if (!read_word_list(filename, &word_list)) return false;
294  word_list.sort(sort_strings_by_dec_length);
295  return add_word_list(word_list, unicharset, reverse_policy);
296 }
297 
299  GenericVector<STRING>* words) {
300  FILE *word_file;
301  char line_str[CHARS_PER_LINE];
302  int word_count = 0;
303 
304  word_file = fopen(filename, "rb");
305  if (word_file == NULL) return false;
306 
307  while (fgets(line_str, sizeof(line_str), word_file) != NULL) {
308  chomp_string(line_str); // remove newline
309  STRING word_str(line_str);
310  ++word_count;
311  if (debug_level_ && word_count % 10000 == 0)
312  tprintf("Read %d words so far\n", word_count);
313  words->push_back(word_str);
314  }
315  if (debug_level_)
316  tprintf("Read %d words total.\n", word_count);
317  fclose(word_file);
318  return true;
319 }
320 
322  const UNICHARSET &unicharset,
323  Trie::RTLReversePolicy reverse_policy) {
324  for (int i = 0; i < words.size(); ++i) {
325  WERD_CHOICE word(words[i].string(), unicharset);
326  if (word.length() == 0 || word.contains_unichar_id(INVALID_UNICHAR_ID))
327  continue;
328  if ((reverse_policy == RRP_REVERSE_IF_HAS_RTL &&
329  word.has_rtl_unichar_id()) ||
330  reverse_policy == RRP_FORCE_REVERSE) {
332  }
333  if (!word_in_dawg(word)) {
334  add_word_to_dawg(word);
335  if (!word_in_dawg(word)) {
336  tprintf("Error: word '%s' not in DAWG after adding it\n",
337  words[i].string());
338  return false;
339  }
340  }
341  }
342  return true;
343 }
344 
352  unicharset->unichar_insert(kPuncPatternUnicode);
358  initialized_patterns_ = true;
359  unicharset_size_ = unicharset->size();
360 }
361 
363  const UNICHARSET &unicharset,
364  GenericVector<UNICHAR_ID> *vec) const {
365  bool is_alpha = unicharset.get_isalpha(unichar_id);
366  if (is_alpha) {
369  if (unicharset.get_islower(unichar_id)) {
371  } else if (unicharset.get_isupper(unichar_id)) {
373  }
374  }
375  if (unicharset.get_isdigit(unichar_id)) {
377  if (!is_alpha) vec->push_back(alphanum_pattern_);
378  }
379  if (unicharset.get_ispunctuation(unichar_id)) {
380  vec->push_back(punc_pattern_);
381  }
382 }
383 
385  if (ch == 'c') {
386  return alpha_pattern_;
387  } else if (ch == 'd') {
388  return digit_pattern_;
389  } else if (ch == 'n') {
390  return alphanum_pattern_;
391  } else if (ch == 'p') {
392  return punc_pattern_;
393  } else if (ch == 'a') {
394  return lower_pattern_;
395  } else if (ch == 'A') {
396  return upper_pattern_;
397  } else {
398  return INVALID_UNICHAR_ID;
399  }
400 }
401 
403  const UNICHARSET &unicharset) {
404  if (!initialized_patterns_) {
405  tprintf("please call initialize_patterns() before read_pattern_list()\n");
406  return false;
407  }
408 
409  FILE *pattern_file = fopen(filename, "rb");
410  if (pattern_file == NULL) {
411  tprintf("Error opening pattern file %s\n", filename);
412  return false;
413  }
414 
415  int pattern_count = 0;
416  char string[CHARS_PER_LINE];
417  while (fgets(string, CHARS_PER_LINE, pattern_file) != NULL) {
418  chomp_string(string); // remove newline
419  // Parse the pattern and construct a unichar id vector.
420  // Record the number of repetitions of each unichar in the parallel vector.
421  WERD_CHOICE word(&unicharset);
422  GenericVector<bool> repetitions_vec;
423  const char *str_ptr = string;
424  int step = unicharset.step(str_ptr);
425  bool failed = false;
426  while (step > 0) {
427  UNICHAR_ID curr_unichar_id = INVALID_UNICHAR_ID;
428  if (step == 1 && *str_ptr == '\\') {
429  ++str_ptr;
430  if (*str_ptr == '\\') { // regular '\' unichar that was escaped
431  curr_unichar_id = unicharset.unichar_to_id(str_ptr, step);
432  } else {
433  if (word.length() < kSaneNumConcreteChars) {
434  tprintf("Please provide at least %d concrete characters at the"
435  " beginning of the pattern\n", kSaneNumConcreteChars);
436  failed = true;
437  break;
438  }
439  // Parse character class from expression.
440  curr_unichar_id = character_class_to_pattern(*str_ptr);
441  }
442  } else {
443  curr_unichar_id = unicharset.unichar_to_id(str_ptr, step);
444  }
445  if (curr_unichar_id == INVALID_UNICHAR_ID) {
446  failed = true;
447  break; // failed to parse this pattern
448  }
449  word.append_unichar_id(curr_unichar_id, 1, 0.0, 0.0);
450  repetitions_vec.push_back(false);
451  str_ptr += step;
452  step = unicharset.step(str_ptr);
453  // Check if there is a repetition pattern specified after this unichar.
454  if (step == 1 && *str_ptr == '\\' && *(str_ptr+1) == '*') {
455  repetitions_vec[repetitions_vec.size()-1] = true;
456  str_ptr += 2;
457  step = unicharset.step(str_ptr);
458  }
459  }
460  if (failed) {
461  tprintf("Invalid user pattern %s\n", string);
462  continue;
463  }
464  // Insert the pattern into the trie.
465  if (debug_level_ > 2) {
466  tprintf("Inserting expanded user pattern %s\n",
467  word.debug_string().string());
468  }
469  if (!this->word_in_dawg(word)) {
470  this->add_word_to_dawg(word, &repetitions_vec);
471  if (!this->word_in_dawg(word)) {
472  tprintf("Error: failed to insert pattern '%s'\n", string);
473  }
474  }
475  ++pattern_count;
476  }
477  if (debug_level_) {
478  tprintf("Read %d valid patterns from %s\n", pattern_count, filename);
479  }
480  fclose(pattern_file);
481  return true;
482 }
483 
485  bool word_end, UNICHAR_ID unichar_id) {
486  EDGE_RECORD *edge_ptr = NULL;
487  EDGE_INDEX edge_index = 0;
488  ASSERT_HOST(edge_char_of(node1, node2, direction, word_end,
489  unichar_id, &edge_ptr, &edge_index));
490  if (debug_level_ > 1) {
491  tprintf("removed edge in nodes_[" REFFORMAT "]: ", node1);
492  print_edge_rec(*edge_ptr);
493  tprintf("\n");
494  }
495  if (direction == FORWARD_EDGE) {
496  nodes_[node1]->forward_edges.remove(edge_index);
497  } else if (node1 == 0) {
498  KillEdge(&nodes_[node1]->backward_edges[edge_index]);
499  root_back_freelist_.push_back(edge_index);
500  } else {
501  nodes_[node1]->backward_edges.remove(edge_index);
502  }
503  --num_edges_;
504 }
505 
506 // Some optimizations employed in add_word_to_dawg and trie_to_dawg:
507 // 1 Avoid insertion sorting or bubble sorting the tail root node
508 // (back links on node 0, a list of all the leaves.). The node is
509 // huge, and sorting it with n^2 time is terrible.
510 // 2 Avoid using GenericVector::remove on the tail root node.
511 // (a) During add of words to the trie, zero-out the unichars and
512 // keep a freelist of spaces to re-use.
513 // (b) During reduction, just zero-out the unichars of deleted back
514 // links, skipping zero entries while searching.
515 // 3 Avoid linear search of the tail root node. This has to be done when
516 // a suffix is added to an existing word. Adding words by decreasing
517 // length avoids this problem entirely. Words can still be added in
518 // any order, but it is faster to add the longest first.
520  root_back_freelist_.clear(); // Will be invalided by trie_to_dawg.
521  if (debug_level_ > 2) {
522  print_all("Before reduction:", MAX_NODE_EDGES_DISPLAY);
523  }
524  NODE_MARKER reduced_nodes = new bool[nodes_.size()];
525  for (int i = 0; i < nodes_.size(); i++) reduced_nodes[i] = 0;
526  this->reduce_node_input(0, reduced_nodes);
527  delete[] reduced_nodes;
528 
529  if (debug_level_ > 2) {
530  print_all("After reduction:", MAX_NODE_EDGES_DISPLAY);
531  }
532  // Build a translation map from node indices in nodes_ vector to
533  // their target indices in EDGE_ARRAY.
534  NODE_REF *node_ref_map = new NODE_REF[nodes_.size() + 1];
535  int i, j;
536  node_ref_map[0] = 0;
537  for (i = 0; i < nodes_.size(); ++i) {
538  node_ref_map[i+1] = node_ref_map[i] + nodes_[i]->forward_edges.size();
539  }
540  int num_forward_edges = node_ref_map[i];
541 
542  // Convert nodes_ vector into EDGE_ARRAY translating the next node references
543  // in edges using node_ref_map. Empty nodes and backward edges are dropped.
544  EDGE_ARRAY edge_array = new EDGE_RECORD[num_forward_edges];
545  EDGE_ARRAY edge_array_ptr = edge_array;
546  for (i = 0; i < nodes_.size(); ++i) {
547  TRIE_NODE_RECORD *node_ptr = nodes_[i];
548  int end = node_ptr->forward_edges.size();
549  for (j = 0; j < end; ++j) {
550  EDGE_RECORD &edge_rec = node_ptr->forward_edges[j];
551  NODE_REF node_ref = next_node_from_edge_rec(edge_rec);
552  ASSERT_HOST(node_ref < nodes_.size());
553  UNICHAR_ID unichar_id = unichar_id_from_edge_rec(edge_rec);
554  link_edge(edge_array_ptr, node_ref_map[node_ref], false, FORWARD_EDGE,
555  end_of_word_from_edge_rec(edge_rec), unichar_id);
556  if (j == end - 1) set_marker_flag_in_edge_rec(edge_array_ptr);
557  ++edge_array_ptr;
558  }
559  }
560  delete[] node_ref_map;
561 
562  return new SquishedDawg(edge_array, num_forward_edges, type_, lang_,
564 }
565 
567  const EDGE_RECORD &edge1,
568  const EDGE_RECORD &edge2) {
569  if (debug_level_ > 1) {
570  tprintf("\nCollapsing node %" PRIi64 ":\n", node);
572  tprintf("Candidate edges: ");
573  print_edge_rec(edge1);
574  tprintf(", ");
575  print_edge_rec(edge2);
576  tprintf("\n\n");
577  }
578  NODE_REF next_node1 = next_node_from_edge_rec(edge1);
579  NODE_REF next_node2 = next_node_from_edge_rec(edge2);
580  TRIE_NODE_RECORD *next_node2_ptr = nodes_[next_node2];
581  // Translate all edges going to/from next_node2 to go to/from next_node1.
582  EDGE_RECORD *edge_ptr = NULL;
583  EDGE_INDEX edge_index;
584  int i;
585  // The backward link in node to next_node2 will be zeroed out by the caller.
586  // Copy all the backward links in next_node2 to node next_node1
587  for (i = 0; i < next_node2_ptr->backward_edges.size(); ++i) {
588  const EDGE_RECORD &bkw_edge = next_node2_ptr->backward_edges[i];
589  NODE_REF curr_next_node = next_node_from_edge_rec(bkw_edge);
590  UNICHAR_ID curr_unichar_id = unichar_id_from_edge_rec(bkw_edge);
591  int curr_word_end = end_of_word_from_edge_rec(bkw_edge);
592  bool marker_flag = marker_flag_from_edge_rec(bkw_edge);
593  add_edge_linkage(next_node1, curr_next_node, marker_flag, BACKWARD_EDGE,
594  curr_word_end, curr_unichar_id);
595  // Relocate the corresponding forward edge in curr_next_node
596  ASSERT_HOST(edge_char_of(curr_next_node, next_node2, FORWARD_EDGE,
597  curr_word_end, curr_unichar_id,
598  &edge_ptr, &edge_index));
599  set_next_node_in_edge_rec(edge_ptr, next_node1);
600  }
601  int next_node2_num_edges = (next_node2_ptr->forward_edges.size() +
602  next_node2_ptr->backward_edges.size());
603  if (debug_level_ > 1) {
604  tprintf("removed %d edges from node " REFFORMAT "\n",
605  next_node2_num_edges, next_node2);
606  }
607  next_node2_ptr->forward_edges.clear();
608  next_node2_ptr->backward_edges.clear();
609  num_edges_ -= next_node2_num_edges;
610  return true;
611 }
612 
614  UNICHAR_ID unichar_id,
615  NODE_REF node,
616  EDGE_VECTOR* backward_edges,
617  NODE_MARKER reduced_nodes) {
618  if (debug_level_ > 1)
619  tprintf("reduce_lettered_edges(edge=" REFFORMAT ")\n", edge_index);
620  // Compare each of the edge pairs with the given unichar_id.
621  bool did_something = false;
622  for (int i = edge_index; i < backward_edges->size() - 1; ++i) {
623  // Find the first edge that can be eliminated.
624  UNICHAR_ID curr_unichar_id = INVALID_UNICHAR_ID;
625  while (i < backward_edges->size()) {
626  if (!DeadEdge((*backward_edges)[i])) {
627  curr_unichar_id = unichar_id_from_edge_rec((*backward_edges)[i]);
628  if (curr_unichar_id != unichar_id) return did_something;
629  if (can_be_eliminated((*backward_edges)[i])) break;
630  }
631  ++i;
632  }
633  if (i == backward_edges->size()) break;
634  const EDGE_RECORD &edge_rec = (*backward_edges)[i];
635  // Compare it to the rest of the edges with the given unichar_id.
636  for (int j = i + 1; j < backward_edges->size(); ++j) {
637  const EDGE_RECORD &next_edge_rec = (*backward_edges)[j];
638  if (DeadEdge(next_edge_rec)) continue;
639  UNICHAR_ID next_id = unichar_id_from_edge_rec(next_edge_rec);
640  if (next_id != unichar_id) break;
641  if (end_of_word_from_edge_rec(next_edge_rec) ==
642  end_of_word_from_edge_rec(edge_rec) &&
643  can_be_eliminated(next_edge_rec) &&
644  eliminate_redundant_edges(node, edge_rec, next_edge_rec)) {
645  reduced_nodes[next_node_from_edge_rec(edge_rec)] = 0;
646  did_something = true;
647  KillEdge(&(*backward_edges)[j]);
648  }
649  }
650  }
651  return did_something;
652 }
653 
655  int num_edges = edges->size();
656  if (num_edges <= 1) return;
658  sort_vec.reserve(num_edges);
659  for (int i = 0; i < num_edges; ++i) {
661  unichar_id_from_edge_rec((*edges)[i]), (*edges)[i]));
662  }
663  sort_vec.sort();
664  for (int i = 0; i < num_edges; ++i)
665  (*edges)[i] = sort_vec[i].data;
666 }
667 
669  NODE_MARKER reduced_nodes) {
670  EDGE_VECTOR &backward_edges = nodes_[node]->backward_edges;
671  sort_edges(&backward_edges);
672  if (debug_level_ > 1) {
673  tprintf("reduce_node_input(node=" REFFORMAT ")\n", node);
675  }
676 
677  EDGE_INDEX edge_index = 0;
678  while (edge_index < backward_edges.size()) {
679  if (DeadEdge(backward_edges[edge_index])) continue;
680  UNICHAR_ID unichar_id =
681  unichar_id_from_edge_rec(backward_edges[edge_index]);
682  while (reduce_lettered_edges(edge_index, unichar_id, node,
683  &backward_edges, reduced_nodes));
684  while (++edge_index < backward_edges.size()) {
685  UNICHAR_ID id = unichar_id_from_edge_rec(backward_edges[edge_index]);
686  if (!DeadEdge(backward_edges[edge_index]) && id != unichar_id) break;
687  }
688  }
689  reduced_nodes[node] = true; // mark as reduced
690 
691  if (debug_level_ > 1) {
692  tprintf("Node " REFFORMAT " after reduction:\n", node);
694  }
695 
696  for (int i = 0; i < backward_edges.size(); ++i) {
697  if (DeadEdge(backward_edges[i])) continue;
698  NODE_REF next_node = next_node_from_edge_rec(backward_edges[i]);
699  if (next_node != 0 && !reduced_nodes[next_node]) {
700  reduce_node_input(next_node, reduced_nodes);
701  }
702  }
703 }
704 
705 void Trie::print_node(NODE_REF node, int max_num_edges) const {
706  if (node == NO_EDGE) return; // nothing to print
707  TRIE_NODE_RECORD *node_ptr = nodes_[node];
708  int num_fwd = node_ptr->forward_edges.size();
709  int num_bkw = node_ptr->backward_edges.size();
710  EDGE_VECTOR *vec;
711  for (int dir = 0; dir < 2; ++dir) {
712  if (dir == 0) {
713  vec = &(node_ptr->forward_edges);
714  tprintf(REFFORMAT " (%d %d): ", node, num_fwd, num_bkw);
715  } else {
716  vec = &(node_ptr->backward_edges);
717  tprintf("\t");
718  }
719  int i;
720  for (i = 0; (dir == 0 ? i < num_fwd : i < num_bkw) &&
721  i < max_num_edges; ++i) {
722  if (DeadEdge((*vec)[i])) continue;
723  print_edge_rec((*vec)[i]);
724  tprintf(" ");
725  }
726  if (dir == 0 ? i < num_fwd : i < num_bkw) tprintf("...");
727  tprintf("\n");
728  }
729 }
730 
731 } // namespace tesseract
void reserve(int size)
bool empty() const
Definition: genericvector.h:91
#define MAX_NODE_EDGES_DISPLAY
Definition: dawg.h:87
SquishedDawg * trie_to_dawg()
Definition: trie.cpp:519
#define WERD_END_FLAG
Definition: dawg.h:90
void remove_edge(NODE_REF node1, NODE_REF node2, bool word_end, UNICHAR_ID unichar_id)
Definition: trie.h:381
#define REFFORMAT
Definition: dawg.h:93
void print_node(NODE_REF node, int max_num_edges) const
Definition: trie.cpp:705
bool add_word_list(const GenericVector< STRING > &words, const UNICHARSET &unicharset, Trie::RTLReversePolicy reverse_policy)
Definition: trie.cpp:321
bool get_ispunctuation(UNICHAR_ID unichar_id) const
Definition: unicharset.h:518
void reduce_node_input(NODE_REF node, NODE_MARKER reduced_nodes)
Definition: trie.cpp:668
NODE_REF next_node_from_edge_rec(const EDGE_RECORD &edge_rec) const
Returns the next node visited by following this edge.
Definition: dawg.h:213
bool end_of_word_from_edge_rec(const EDGE_RECORD &edge_rec) const
Returns true if this edge marks the end of a word.
Definition: dawg.h:226
void set_next_node_in_edge_rec(EDGE_RECORD *edge_rec, EDGE_REF value)
Sets the next node link for this edge in the Dawg.
Definition: dawg.h:235
bool get_isdigit(UNICHAR_ID unichar_id) const
Definition: unicharset.h:511
static const int kSaneNumConcreteChars
Definition: trie.h:71
bool edge_rec_match(NODE_REF next_node, bool word_end, UNICHAR_ID unichar_id, NODE_REF other_next_node, bool other_word_end, UNICHAR_ID other_unichar_id) const
Definition: dawg.h:272
bool get_isalpha(UNICHAR_ID unichar_id) const
Definition: unicharset.h:490
void remove(int index)
int unicharset_size_
Definition: dawg.h:309
EDGE_VECTOR backward_edges
Definition: trie.h:50
#define FORWARD_EDGE
Definition: dawg.h:85
static const char kPuncPatternUnicode[]
Definition: trie.h:78
UNICHAR_ID alphanum_pattern_
Definition: trie.h:430
void KillEdge(EDGE_RECORD *edge_rec) const
Definition: trie.h:154
UNICHAR_ID punc_pattern_
Definition: trie.h:431
inT64 NODE_REF
Definition: dawg.h:56
TRIE_NODES nodes_
Definition: trie.h:419
int size() const
Definition: genericvector.h:72
const STRING debug_string() const
Definition: ratngs.h:501
UNICHAR_ID unichar_id(int index) const
Definition: ratngs.h:311
const char kForceReverse[]
Definition: trie.cpp:45
void print() const
Definition: ratngs.h:576
static const char kUpperPatternUnicode[]
Definition: trie.h:80
void clear()
Definition: trie.cpp:65
void print_all(const char *msg, int max_num_edges)
Definition: trie.h:334
bool can_be_eliminated(const EDGE_RECORD &edge_rec)
Definition: trie.h:326
UNICHAR_ID alpha_pattern_
Definition: trie.h:428
int direction(EDGEPT *point)
Definition: vecfuncs.cpp:43
bool marker_flag_from_edge_rec(const EDGE_RECORD &edge_rec) const
Returns the marker flag of this edge.
Definition: dawg.h:217
void delete_data_pointers()
GenericVector< EDGE_INDEX > root_back_freelist_
Definition: trie.h:424
void append_unichar_id(UNICHAR_ID unichar_id, int blob_count, float rating, float certainty)
Definition: ratngs.cpp:449
void chomp_string(char *str)
Definition: helpers.h:82
#define tprintf(...)
Definition: tprintf.h:31
PermuterType perm_
Permuter code that should be used if the word is found in this Dawg.
Definition: dawg.h:304
const char *const RTLReversePolicyNames[]
Definition: trie.cpp:47
inT64 EDGE_INDEX
Definition: trie.h:32
void link_edge(EDGE_RECORD *edge, NODE_REF nxt, bool repeats, int direction, bool word_end, UNICHAR_ID unichar_id)
Definition: trie.h:306
NODE_REF next_node(EDGE_REF edge_ref) const
Definition: trie.h:133
static const char kAlphanumPatternUnicode[]
Definition: trie.h:77
#define BACKWARD_EDGE
Definition: dawg.h:86
static const char kDigitPatternUnicode[]
Definition: trie.h:76
int size() const
Definition: unicharset.h:338
void remove_edge_linkage(NODE_REF node1, NODE_REF node2, int direction, bool word_end, UNICHAR_ID unichar_id)
Definition: trie.cpp:484
bool read_word_list(const char *filename, GenericVector< STRING > *words)
Definition: trie.cpp:298
const char * string() const
Definition: strngs.cpp:198
int push_back(T object)
uinT64 num_edges_
Definition: trie.h:420
bool has_rtl_unichar_id() const
Definition: ratngs.cpp:412
UNICHAR_ID lower_pattern_
Definition: trie.h:432
EDGE_VECTOR forward_edges
Definition: trie.h:49
void unichar_id_to_patterns(UNICHAR_ID unichar_id, const UNICHARSET &unicharset, GenericVector< UNICHAR_ID > *vec) const
Definition: trie.cpp:362
void unichar_insert(const char *const unichar_repr, OldUncleanUnichars old_style)
Definition: unicharset.cpp:623
bool reduce_lettered_edges(EDGE_INDEX edge_index, UNICHAR_ID unichar_id, NODE_REF node, EDGE_VECTOR *backward_edges, NODE_MARKER reduced_nodes)
Definition: trie.cpp:613
int given_greater_than_edge_rec(NODE_REF next_node, bool word_end, UNICHAR_ID unichar_id, const EDGE_RECORD &edge_rec) const
Definition: dawg.h:251
bool get_islower(UNICHAR_ID unichar_id) const
Definition: unicharset.h:497
void set_marker_flag_in_edge_rec(EDGE_RECORD *edge_rec)
Sets this edge record to be the last one in a sequence of edges.
Definition: dawg.h:241
void sort_edges(EDGE_VECTOR *edges)
Definition: trie.cpp:654
EDGE_RECORD * EDGE_ARRAY
Definition: dawg.h:54
STRING lang_
Definition: dawg.h:302
EDGE_REF edge_char_of(NODE_REF node_ref, UNICHAR_ID unichar_id, bool word_end) const
Definition: trie.h:104
int length() const
Definition: genericvector.h:86
UNICHAR_ID unichar_to_id(const char *const unichar_repr) const
Definition: unicharset.cpp:207
Definition: strngs.h:45
static const char kAlphaPatternUnicode[]
Definition: trie.h:75
int32_t inT32
Definition: host.h:38
void add_word_ending(EDGE_RECORD *edge, NODE_REF the_next_node, bool repeats, UNICHAR_ID unichar_id)
Definition: trie.cpp:160
bool add_word_to_dawg(const WERD_CHOICE &word, const GenericVector< bool > *repetitions)
Definition: trie.cpp:177
bool add_edge_linkage(NODE_REF node1, NODE_REF node2, bool repeats, int direction, bool word_end, UNICHAR_ID unichar_id)
Definition: trie.cpp:124
void reverse_and_mirror_unichar_ids()
Definition: ratngs.cpp:346
bool get_isupper(UNICHAR_ID unichar_id) const
Definition: unicharset.h:504
#define ASSERT_HOST(x)
Definition: errcode.h:84
bool contains_unichar_id(UNICHAR_ID unichar_id) const
Definition: ratngs.cpp:307
bool eliminate_redundant_edges(NODE_REF node, const EDGE_RECORD &edge1, const EDGE_RECORD &edge2)
Definition: trie.cpp:566
static const char kLowerPatternUnicode[]
Definition: trie.h:79
uinT64 EDGE_RECORD
Definition: dawg.h:51
bool * NODE_MARKER
Definition: trie.h:45
const char kDoNotReverse[]
Definition: trie.cpp:43
bool add_new_edge(NODE_REF node1, NODE_REF node2, bool repeats, bool word_end, UNICHAR_ID unichar_id)
Definition: trie.h:356
UNICHAR_ID unichar_id_from_edge_rec(const EDGE_RECORD &edge_rec) const
Returns UNICHAR_ID recorded in this edge.
Definition: dawg.h:230
bool read_pattern_list(const char *filename, const UNICHARSET &unicharset)
Definition: trie.cpp:402
UNICHAR_ID character_class_to_pattern(char ch)
Definition: trie.cpp:384
bool word_in_dawg(const WERD_CHOICE &word) const
Returns true if the given word is in the Dawg.
Definition: dawg.cpp:69
RTLReversePolicy
Definition: trie.h:64
bool read_and_add_word_list(const char *filename, const UNICHARSET &unicharset, Trie::RTLReversePolicy reverse)
Definition: trie.cpp:289
int debug_level_
Definition: dawg.h:316
const char kReverseIfHasRTL[]
Definition: trie.cpp:44
void insert(T t, int index)
#define MARKER_FLAG
Definition: dawg.h:88
int length() const
Definition: ratngs.h:299
bool initialized_patterns_
Definition: trie.h:427
void print_edge_rec(const EDGE_RECORD &edge_rec) const
Definition: trie.h:317
int flag_start_bit_
Definition: dawg.h:310
int step(const char *str) const
Definition: unicharset.cpp:230
UNICHAR_ID upper_pattern_
Definition: trie.h:433
DawgType type_
Definition: dawg.h:301
bool DeadEdge(const EDGE_RECORD &edge_rec) const
Definition: trie.h:158
inT32 length() const
Definition: strngs.cpp:193
NODE_REF new_dawg_node()
Definition: trie.cpp:276
#define CHARS_PER_LINE
Definition: cutil.h:57
UNICHAR_ID digit_pattern_
Definition: trie.h:429
int UNICHAR_ID
Definition: unichar.h:35
void initialize_patterns(UNICHARSET *unicharset)
Definition: trie.cpp:345
static const char * get_reverse_policy_name(RTLReversePolicy reverse_policy)
Definition: trie.cpp:60