tesseract  4.00.00dev
lstmtraining.cpp
Go to the documentation of this file.
1 // File: lstmtraining.cpp
3 // Description: Training program for LSTM-based networks.
4 // Author: Ray Smith
5 // Created: Fri May 03 11:05:06 PST 2013
6 //
7 // (C) Copyright 2013, Google Inc.
8 // Licensed under the Apache License, Version 2.0 (the "License");
9 // you may not use this file except in compliance with the License.
10 // You may obtain a copy of the License at
11 // http://www.apache.org/licenses/LICENSE-2.0
12 // Unless required by applicable law or agreed to in writing, software
13 // distributed under the License is distributed on an "AS IS" BASIS,
14 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 // See the License for the specific language governing permissions and
16 // limitations under the License.
18 
19 #ifdef GOOGLE_TESSERACT
20 #include "base/commandlineflags.h"
21 #endif
22 #include "commontraining.h"
23 #include "lstmtester.h"
24 #include "lstmtrainer.h"
25 #include "params.h"
26 #include "strngs.h"
27 #include "tprintf.h"
29 
30 INT_PARAM_FLAG(debug_interval, 0, "How often to display the alignment.");
31 STRING_PARAM_FLAG(net_spec, "", "Network specification");
32 INT_PARAM_FLAG(net_mode, 192, "Controls network behavior.");
33 INT_PARAM_FLAG(perfect_sample_delay, 0,
34  "How many imperfect samples between perfect ones.");
35 DOUBLE_PARAM_FLAG(target_error_rate, 0.01, "Final error rate in percent.");
36 DOUBLE_PARAM_FLAG(weight_range, 0.1, "Range of initial random weights.");
37 DOUBLE_PARAM_FLAG(learning_rate, 10.0e-4, "Weight factor for new deltas.");
38 DOUBLE_PARAM_FLAG(momentum, 0.5, "Decay factor for repeating deltas.");
39 DOUBLE_PARAM_FLAG(adam_beta, 0.999, "Decay factor for repeating deltas.");
40 INT_PARAM_FLAG(max_image_MB, 6000, "Max memory to use for images.");
41 STRING_PARAM_FLAG(continue_from, "", "Existing model to extend");
42 STRING_PARAM_FLAG(model_output, "lstmtrain", "Basename for output models");
43 STRING_PARAM_FLAG(train_listfile, "",
44  "File listing training files in lstmf training format.");
45 STRING_PARAM_FLAG(eval_listfile, "",
46  "File listing eval files in lstmf training format.");
47 BOOL_PARAM_FLAG(stop_training, false,
48  "Just convert the training model to a runtime model.");
49 BOOL_PARAM_FLAG(convert_to_int, false,
50  "Convert the recognition model to an integer model.");
51 BOOL_PARAM_FLAG(sequential_training, false,
52  "Use the training files sequentially instead of round-robin.");
53 INT_PARAM_FLAG(append_index, -1, "Index in continue_from Network at which to"
54  " attach the new network defined by net_spec");
55 BOOL_PARAM_FLAG(debug_network, false,
56  "Get info on distribution of weight values");
57 INT_PARAM_FLAG(max_iterations, 0, "If set, exit after this many iterations");
58 STRING_PARAM_FLAG(traineddata, "",
59  "Combined Dawgs/Unicharset/Recoder for language model");
60 STRING_PARAM_FLAG(old_traineddata, "",
61  "When changing the character set, this specifies the old"
62  " character set that is to be replaced");
63 BOOL_PARAM_FLAG(randomly_rotate, false,
64  "Train OSD and randomly turn training samples upside-down");
65 
66 // Number of training images to train between calls to MaintainCheckpoints.
67 const int kNumPagesPerBatch = 100;
68 
69 // Apart from command-line flags, input is a collection of lstmf files, that
70 // were previously created using tesseract with the lstm.train config file.
71 // The program iterates over the inputs, feeding the data to the network,
72 // until the error rate reaches a specified target or max_iterations is reached.
73 int main(int argc, char **argv) {
74  ParseArguments(&argc, &argv);
75  // Purify the model name in case it is based on the network string.
76  if (FLAGS_model_output.empty()) {
77  tprintf("Must provide a --model_output!\n");
78  return 1;
79  }
80  if (FLAGS_traineddata.empty()) {
81  tprintf("Must provide a --traineddata see training wiki\n");
82  return 1;
83  }
84  STRING model_output = FLAGS_model_output.c_str();
85  for (int i = 0; i < model_output.length(); ++i) {
86  if (model_output[i] == '[' || model_output[i] == ']')
87  model_output[i] = '-';
88  if (model_output[i] == '(' || model_output[i] == ')')
89  model_output[i] = '_';
90  }
91  // Setup the trainer.
92  STRING checkpoint_file = FLAGS_model_output.c_str();
93  checkpoint_file += "_checkpoint";
94  STRING checkpoint_bak = checkpoint_file + ".bak";
95  tesseract::LSTMTrainer trainer(
96  nullptr, nullptr, nullptr, nullptr, FLAGS_model_output.c_str(),
97  checkpoint_file.c_str(), FLAGS_debug_interval,
98  static_cast<inT64>(FLAGS_max_image_MB) * 1048576);
99  trainer.InitCharSet(FLAGS_traineddata.c_str());
100 
101  // Reading something from an existing model doesn't require many flags,
102  // so do it now and exit.
103  if (FLAGS_stop_training || FLAGS_debug_network) {
104  if (!trainer.TryLoadingCheckpoint(FLAGS_continue_from.c_str(), nullptr)) {
105  tprintf("Failed to read continue from: %s\n",
106  FLAGS_continue_from.c_str());
107  return 1;
108  }
109  if (FLAGS_debug_network) {
110  trainer.DebugNetwork();
111  } else {
112  if (FLAGS_convert_to_int) trainer.ConvertToInt();
113  if (!trainer.SaveTraineddata(FLAGS_model_output.c_str())) {
114  tprintf("Failed to write recognition model : %s\n",
115  FLAGS_model_output.c_str());
116  }
117  }
118  return 0;
119  }
120 
121  // Get the list of files to process.
122  if (FLAGS_train_listfile.empty()) {
123  tprintf("Must supply a list of training filenames! --train_listfile\n");
124  return 1;
125  }
126  GenericVector<STRING> filenames;
127  if (!tesseract::LoadFileLinesToStrings(FLAGS_train_listfile.c_str(),
128  &filenames)) {
129  tprintf("Failed to load list of training filenames from %s\n",
130  FLAGS_train_listfile.c_str());
131  return 1;
132  }
133 
134  // Checkpoints always take priority if they are available.
135  if (trainer.TryLoadingCheckpoint(checkpoint_file.string(), nullptr) ||
136  trainer.TryLoadingCheckpoint(checkpoint_bak.string(), nullptr)) {
137  tprintf("Successfully restored trainer from %s\n",
138  checkpoint_file.string());
139  } else {
140  if (!FLAGS_continue_from.empty()) {
141  // Load a past model file to improve upon.
142  if (!trainer.TryLoadingCheckpoint(FLAGS_continue_from.c_str(),
143  FLAGS_append_index >= 0
144  ? FLAGS_continue_from.c_str()
145  : FLAGS_old_traineddata.c_str())) {
146  tprintf("Failed to continue from: %s\n", FLAGS_continue_from.c_str());
147  return 1;
148  }
149  tprintf("Continuing from %s\n", FLAGS_continue_from.c_str());
150  trainer.InitIterations();
151  }
152  if (FLAGS_continue_from.empty() || FLAGS_append_index >= 0) {
153  if (FLAGS_append_index >= 0) {
154  tprintf("Appending a new network to an old one!!");
155  if (FLAGS_continue_from.empty()) {
156  tprintf("Must set --continue_from for appending!\n");
157  return 1;
158  }
159  }
160  // We are initializing from scratch.
161  if (!trainer.InitNetwork(FLAGS_net_spec.c_str(), FLAGS_append_index,
162  FLAGS_net_mode, FLAGS_weight_range,
163  FLAGS_learning_rate, FLAGS_momentum,
164  FLAGS_adam_beta)) {
165  tprintf("Failed to create network from spec: %s\n",
166  FLAGS_net_spec.c_str());
167  return 1;
168  }
169  trainer.set_perfect_delay(FLAGS_perfect_sample_delay);
170  }
171  }
172  if (!trainer.LoadAllTrainingData(filenames,
173  FLAGS_sequential_training
176  FLAGS_randomly_rotate)) {
177  tprintf("Load of images failed!!\n");
178  return 1;
179  }
180 
181  tesseract::LSTMTester tester(static_cast<inT64>(FLAGS_max_image_MB) *
182  1048576);
183  tesseract::TestCallback tester_callback = nullptr;
184  if (!FLAGS_eval_listfile.empty()) {
185  if (!tester.LoadAllEvalData(FLAGS_eval_listfile.c_str())) {
186  tprintf("Failed to load eval data from: %s\n",
187  FLAGS_eval_listfile.c_str());
188  return 1;
189  }
190  tester_callback =
192  }
193  do {
194  // Train a few.
195  int iteration = trainer.training_iteration();
196  for (int target_iteration = iteration + kNumPagesPerBatch;
197  iteration < target_iteration;
198  iteration = trainer.training_iteration()) {
199  trainer.TrainOnLine(&trainer, false);
200  }
201  STRING log_str;
202  trainer.MaintainCheckpoints(tester_callback, &log_str);
203  tprintf("%s\n", log_str.string());
204  } while (trainer.best_error_rate() > FLAGS_target_error_rate &&
205  (trainer.training_iteration() < FLAGS_max_iterations ||
206  FLAGS_max_iterations == 0));
207  delete tester_callback;
208  tprintf("Finished! Error rate = %g\n", trainer.best_error_rate());
209  return 0;
210 } /* main */
211 
212 
int main(int argc, char **argv)
bool TryLoadingCheckpoint(const char *filename, const char *old_traineddata)
const int kNumPagesPerBatch
void set_perfect_delay(int delay)
Definition: lstmtrainer.h:151
INT_PARAM_FLAG(debug_interval, 0, "How often to display the alignment.")
_ConstTessMemberResultCallback_0_0< false, R, T1 >::base * NewPermanentTessCallback(const T1 *obj, R(T2::*member)() const)
Definition: tesscallback.h:116
DOUBLE_PARAM_FLAG(target_error_rate, 0.01, "Final error rate in percent.")
bool InitNetwork(const STRING &network_spec, int append_index, int net_flags, float weight_range, float learning_rate, float momentum, float adam_beta)
#define tprintf(...)
Definition: tprintf.h:31
bool SaveTraineddata(const STRING &filename)
BOOL_PARAM_FLAG(stop_training, false, "Just convert the training model to a runtime model.")
bool MaintainCheckpoints(TestCallback tester, STRING *log_msg)
const char * string() const
Definition: strngs.cpp:198
const ImageData * TrainOnLine(LSTMTrainer *samples_trainer, bool batch)
Definition: lstmtrainer.h:259
Definition: strngs.h:45
bool LoadAllTrainingData(const GenericVector< STRING > &filenames, CachingStrategy cache_strategy, bool randomly_rotate)
void InitCharSet(const string &traineddata_path)
Definition: lstmtrainer.h:109
double best_error_rate() const
Definition: lstmtrainer.h:143
bool LoadAllEvalData(const STRING &filenames_file)
Definition: lstmtester.cpp:30
STRING_PARAM_FLAG(net_spec, "", "Network specification")
void ParseArguments(int *argc, char ***argv)
const char * c_str() const
Definition: strngs.cpp:209
bool LoadFileLinesToStrings(const STRING &filename, GenericVector< STRING > *lines)
int64_t inT64
Definition: host.h:40
STRING RunEvalAsync(int iteration, const double *training_errors, const TessdataManager &model_mgr, int training_stage)
Definition: lstmtester.cpp:52
inT32 length() const
Definition: strngs.cpp:193