tesseract v5.3.3.20231005
genericheap.h
Go to the documentation of this file.
1// Copyright 2012 Google Inc. All Rights Reserved.
2// Author: rays@google.com (Ray Smith)
4// File: genericheap.h
5// Description: Template heap class.
6// Author: Ray Smith, based on Dan Johnson's original code.
7//
8// (C) Copyright 2012, Google Inc.
9// Licensed under the Apache License, Version 2.0 (the "License");
10// you may not use this file except in compliance with the License.
11// You may obtain a copy of the License at
12// http://www.apache.org/licenses/LICENSE-2.0
13// Unless required by applicable law or agreed to in writing, software
14// distributed under the License is distributed on an "AS IS" BASIS,
15// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16// See the License for the specific language governing permissions and
17// limitations under the License.
18//
20
21#ifndef TESSERACT_CCUTIL_GENERICHEAP_H_
22#define TESSERACT_CCUTIL_GENERICHEAP_H_
23
24#include "errcode.h"
25
26#include <vector>
27
28namespace tesseract {
29
30// GenericHeap requires 1 template argument:
31// Pair will normally be either KDPairInc<Key, Data> or KDPairDec<Key, Data>
32// for some arbitrary Key and scalar, smart pointer, or non-ownership pointer
33// Data type, according to whether a MIN heap or a MAX heap is desired,
34// respectively. Using KDPtrPairInc<Key, Data> or KDPtrPairDec<Key, Data>,
35// GenericHeap can also handle simple Data pointers and own them.
36// If no additional data is required, Pair can also be a scalar, since
37// GenericHeap doesn't look inside it except for operator<.
38//
39// The heap is stored as a packed binary tree in an array hosted by a
40// vector<Pair>, with the invariant that the children of each node are
41// both NOT Pair::operator< the parent node. KDPairInc defines Pair::operator<
42// to use Key::operator< to generate a MIN heap and KDPairDec defines
43// Pair::operator< to use Key::operator> to generate a MAX heap by reversing
44// all the comparisons.
45// See http://en.wikipedia.org/wiki/Heap_(data_structure) for more detail on
46// the basic heap implementation.
47//
48// Insertion and removal are both O(log n) and, unlike the STL heap, an
49// explicit Reshuffle function allows a node to be repositioned in time O(log n)
50// after changing its value.
51//
52// Accessing the element for revaluation is a more complex matter, since the
53// index and pointer can be changed arbitrarily by heap operations.
54// Revaluation can be done by making the Data type in the Pair derived from or
55// contain a DoublePtr as its first data element, making it possible to convert
56// the pointer to a Pair using KDPairInc::RecastDataPointer.
57template <typename Pair>
59public:
60 GenericHeap() = default;
61 // The initial size is only a vector::reserve. It is not enforced as
62 // the size limit of the heap. Caller must implement their own enforcement.
63 explicit GenericHeap(int initial_size) {
64 heap_.reserve(initial_size);
65 }
66
67 // Simple accessors.
68 bool empty() const {
69 return heap_.empty();
70 }
71 int size() const {
72 return heap_.size();
73 }
74 int size_reserved() const {
75 return heap_.size_reserved();
76 }
77 void clear() {
78 // Clear truncates to 0 to keep the number reserved in tact.
79 heap_.clear();
80 }
81 // Provides access to the underlying vector.
82 // Caution! any changes that modify the keys will invalidate the heap!
83 std::vector<Pair> &heap() {
84 return heap_;
85 }
86 // Provides read-only access to an element of the underlying vector.
87 const Pair &get(int index) const {
88 return heap_[index];
89 }
90
91 // Add entry to the heap, keeping the smallest item at the top, by operator<.
92 // Note that *entry is used as the source of operator=, but it is non-const
93 // to allow for a smart pointer to be contained within.
94 // Time = O(log n).
95 void Push(Pair *entry) {
96 int hole_index = heap_.size();
97 // Make a hole in the end of heap_ and sift it up to be the correct
98 // location for the new *entry. To avoid needing a default constructor
99 // for primitive types, and to allow for use of DoublePtr in the Pair
100 // somewhere, we have to incur a double copy here.
101 heap_.push_back(*entry);
102 *entry = heap_.back();
103 hole_index = SiftUp(hole_index, *entry);
104 heap_[hole_index] = *entry;
105 }
106
107 // Get the value of the top (smallest, defined by operator< ) element.
108 const Pair &PeekTop() const {
109 return heap_[0];
110 }
111 // Get the value of the worst (largest, defined by operator< ) element.
112 const Pair &PeekWorst() const {
113 return heap_[IndexOfWorst()];
114 }
115
116 // Removes the top element of the heap. If entry is not nullptr, the element
117 // is copied into *entry, otherwise it is discarded.
118 // Returns false if the heap was already empty.
119 // Time = O(log n).
120 bool Pop(Pair *entry) {
121 int new_size = heap_.size() - 1;
122 if (new_size < 0) {
123 return false; // Already empty.
124 }
125 if (entry != nullptr) {
126 *entry = heap_[0];
127 }
128 if (new_size > 0) {
129 // Sift the hole at the start of the heap_ downwards to match the last
130 // element.
131 Pair hole_pair = heap_[new_size];
132 heap_.resize(new_size);
133 int hole_index = SiftDown(0, hole_pair);
134 heap_[hole_index] = hole_pair;
135 } else {
136 heap_.resize(new_size);
137 }
138 return true;
139 }
140
141 // Removes the MAXIMUM element of the heap. (MIN from a MAX heap.) If entry is
142 // not nullptr, the element is copied into *entry, otherwise it is discarded.
143 // Time = O(n). Returns false if the heap was already empty.
144 bool PopWorst(Pair *entry) {
145 int worst_index = IndexOfWorst();
146 if (worst_index < 0) {
147 return false; // It cannot be empty!
148 }
149 // Extract the worst element from the heap, leaving a hole at worst_index.
150 if (entry != nullptr) {
151 *entry = heap_[worst_index];
152 }
153 int heap_size = heap_.size() - 1;
154 if (heap_size > 0) {
155 // Sift the hole upwards to match the last element of the heap_
156 Pair hole_pair = heap_[heap_size];
157 int hole_index = SiftUp(worst_index, hole_pair);
158 heap_[hole_index] = hole_pair;
159 }
160 heap_.resize(heap_size);
161 return true;
162 }
163
164 // Returns the index of the worst element. Time = O(n/2).
165 int IndexOfWorst() const {
166 int heap_size = heap_.size();
167 if (heap_size == 0) {
168 return -1; // It cannot be empty!
169 }
170
171 // Find the maximum element. Its index is guaranteed to be greater than
172 // the index of the parent of the last element, since by the heap invariant
173 // the parent must be less than or equal to the children.
174 int worst_index = heap_size - 1;
175 int end_parent = ParentNode(worst_index);
176 for (int i = worst_index - 1; i > end_parent; --i) {
177 if (heap_[worst_index] < heap_[i]) {
178 worst_index = i;
179 }
180 }
181 return worst_index;
182 }
183
184 // The pointed-to Pair has changed its key value, so the location of pair
185 // is reshuffled to maintain the heap invariant.
186 // Must be a valid pointer to an element of the heap_!
187 // Caution! Since GenericHeap is based on vector, reallocs may occur
188 // whenever the vector is extended and elements may get shuffled by any
189 // Push or Pop operation. Therefore use this function only if Data in Pair is
190 // of type DoublePtr, derived (first) from DoublePtr, or has a DoublePtr as
191 // its first element. Reshuffles the heap to maintain the invariant.
192 // Time = O(log n).
193 void Reshuffle(Pair *pair) {
194 int index = pair - &heap_[0];
195 Pair hole_pair = heap_[index];
196 index = SiftDown(index, hole_pair);
197 index = SiftUp(index, hole_pair);
198 heap_[index] = hole_pair;
199 }
200
201private:
202 // A hole in the heap exists at hole_index, and we want to fill it with the
203 // given pair. SiftUp sifts the hole upward to the correct position and
204 // returns the destination index without actually putting pair there.
205 int SiftUp(int hole_index, const Pair &pair) {
206 int parent;
207 while (hole_index > 0 && pair < heap_[parent = ParentNode(hole_index)]) {
208 heap_[hole_index] = heap_[parent];
209 hole_index = parent;
210 }
211 return hole_index;
212 }
213
214 // A hole in the heap exists at hole_index, and we want to fill it with the
215 // given pair. SiftDown sifts the hole downward to the correct position and
216 // returns the destination index without actually putting pair there.
217 int SiftDown(int hole_index, const Pair &pair) {
218 int heap_size = heap_.size();
219 int child;
220 while ((child = LeftChild(hole_index)) < heap_size) {
221 if (child + 1 < heap_size && heap_[child + 1] < heap_[child]) {
222 ++child;
223 }
224 if (heap_[child] < pair) {
225 heap_[hole_index] = heap_[child];
226 hole_index = child;
227 } else {
228 break;
229 }
230 }
231 return hole_index;
232 }
233
234 // Functions to navigate the tree. Unlike the original implementation, we
235 // store the root at index 0.
236 int ParentNode(int index) const {
237 return (index + 1) / 2 - 1;
238 }
239 int LeftChild(int index) const {
240 return index * 2 + 1;
241 }
242
243private:
244 std::vector<Pair> heap_;
245};
246
247} // namespace tesseract
248
249#endif // TESSERACT_CCUTIL_GENERICHEAP_H_
bool empty() const
Definition: genericheap.h:68
bool PopWorst(Pair *entry)
Definition: genericheap.h:144
const Pair & PeekTop() const
Definition: genericheap.h:108
const Pair & PeekWorst() const
Definition: genericheap.h:112
bool Pop(Pair *entry)
Definition: genericheap.h:120
int IndexOfWorst() const
Definition: genericheap.h:165
void Reshuffle(Pair *pair)
Definition: genericheap.h:193
int size_reserved() const
Definition: genericheap.h:74
std::vector< Pair > & heap()
Definition: genericheap.h:83
const Pair & get(int index) const
Definition: genericheap.h:87
GenericHeap(int initial_size)
Definition: genericheap.h:63
void Push(Pair *entry)
Definition: genericheap.h:95