tesseract v5.3.3.20231005
params_model.cpp
Go to the documentation of this file.
1
2// File: params_model.cpp
3// Description: Trained language model parameters.
4// Author: David Eger
5//
6// (C) Copyright 2012, Google Inc.
7// Licensed under the Apache License, Version 2.0 (the "License");
8// you may not use this file except in compliance with the License.
9// You may obtain a copy of the License at
10// http://www.apache.org/licenses/LICENSE-2.0
11// Unless required by applicable law or agreed to in writing, software
12// distributed under the License is distributed on an "AS IS" BASIS,
13// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14// See the License for the specific language governing permissions and
15// limitations under the License.
16//
18
19#include "params_model.h"
20
21#include <cctype>
22#include <cmath>
23#include <cstdio>
24
25#include "bitvector.h"
26#include "helpers.h" // for ClipToRange
27#include "serialis.h" // for TFile
28#include "tprintf.h"
29
30namespace tesseract {
31
32// Scale factor to apply to params model scores.
33static const float kScoreScaleFactor = 100.0f;
34// Minimum cost result to return.
35static const float kMinFinalCost = 0.001f;
36// Maximum cost result to return.
37static const float kMaxFinalCost = 100.0f;
38
40 for (int p = 0; p < PTRAIN_NUM_PASSES; ++p) {
41 tprintf("ParamsModel for pass %d lang %s\n", p, lang_.c_str());
42 for (unsigned i = 0; i < weights_vec_[p].size(); ++i) {
43 tprintf("%s = %g\n", kParamsTrainingFeatureTypeName[i], weights_vec_[p][i]);
44 }
45 }
46}
47
48void ParamsModel::Copy(const ParamsModel &other_model) {
49 for (int p = 0; p < PTRAIN_NUM_PASSES; ++p) {
50 weights_vec_[p] = other_model.weights_for_pass(static_cast<PassEnum>(p));
51 }
52}
53
54// Given a (modifiable) line, parse out a key / value pair.
55// Return true on success.
56bool ParamsModel::ParseLine(char *line, char **key, float *val) {
57 if (line[0] == '#') {
58 return false;
59 }
60 int end_of_key = 0;
61 while (line[end_of_key] && !(isascii(line[end_of_key]) && isspace(line[end_of_key]))) {
62 end_of_key++;
63 }
64 if (!line[end_of_key]) {
65 tprintf("ParamsModel::Incomplete line %s\n", line);
66 return false;
67 }
68 line[end_of_key++] = 0;
69 *key = line;
70 if (sscanf(line + end_of_key, " %f", val) != 1) {
71 return false;
72 }
73 return true;
74}
75
76// Applies params model weights to the given features.
77// Assumes that features is an array of size PTRAIN_NUM_FEATURE_TYPES.
78// The cost is set to a number that can be multiplied by the outline length,
79// as with the old ratings scheme. This enables words of different length
80// and combinations of words to be compared meaningfully.
81float ParamsModel::ComputeCost(const float features[]) const {
82 float unnorm_score = 0.0;
83 for (int f = 0; f < PTRAIN_NUM_FEATURE_TYPES; ++f) {
84 unnorm_score += weights_vec_[pass_][f] * features[f];
85 }
86 return ClipToRange(-unnorm_score / kScoreScaleFactor, kMinFinalCost, kMaxFinalCost);
87}
88
89bool ParamsModel::Equivalent(const ParamsModel &that) const {
90 float epsilon = 0.0001f;
91 for (int p = 0; p < PTRAIN_NUM_PASSES; ++p) {
92 if (weights_vec_[p].size() != that.weights_vec_[p].size()) {
93 return false;
94 }
95 for (unsigned i = 0; i < weights_vec_[p].size(); i++) {
96 if (weights_vec_[p][i] != that.weights_vec_[p][i] &&
97 std::fabs(weights_vec_[p][i] - that.weights_vec_[p][i]) > epsilon) {
98 return false;
99 }
100 }
101 }
102 return true;
103}
104
105bool ParamsModel::LoadFromFp(const char *lang, TFile *fp) {
106 const int kMaxLineSize = 100;
107 char line[kMaxLineSize];
108 BitVector present;
110 lang_ = lang;
111 // Load weights for passes with adaption on.
112 std::vector<float> &weights = weights_vec_[pass_];
113 weights.clear();
114 weights.resize(PTRAIN_NUM_FEATURE_TYPES, 0.0f);
115
116 while (fp->FGets(line, kMaxLineSize) != nullptr) {
117 char *key = nullptr;
118 float value;
119 if (!ParseLine(line, &key, &value)) {
120 continue;
121 }
122 int idx = ParamsTrainingFeatureByName(key);
123 if (idx < 0) {
124 tprintf("ParamsModel::Unknown parameter %s\n", key);
125 continue;
126 }
127 if (!present[idx]) {
128 present.SetValue(idx, true);
129 }
130 weights[idx] = value;
131 }
132 bool complete = (present.NumSetBits() == PTRAIN_NUM_FEATURE_TYPES);
133 if (!complete) {
134 for (int i = 0; i < PTRAIN_NUM_FEATURE_TYPES; i++) {
135 if (!present[i]) {
136 tprintf("Missing field %s.\n", kParamsTrainingFeatureTypeName[i]);
137 }
138 }
139 lang_ = "";
140 weights.clear();
141 }
142 return complete;
143}
144
145bool ParamsModel::SaveToFile(const char *full_path) const {
146 const std::vector<float> &weights = weights_vec_[pass_];
147 if (weights.size() != PTRAIN_NUM_FEATURE_TYPES) {
148 tprintf("Refusing to save ParamsModel that has not been initialized.\n");
149 return false;
150 }
151 FILE *fp = fopen(full_path, "wb");
152 if (!fp) {
153 tprintf("Could not open %s for writing.\n", full_path);
154 return false;
155 }
156 bool all_good = true;
157 for (unsigned i = 0; i < weights.size(); i++) {
158 if (fprintf(fp, "%s %f\n", kParamsTrainingFeatureTypeName[i], weights[i]) < 0) {
159 all_good = false;
160 }
161 }
162 fclose(fp);
163 return all_good;
164}
165
166} // namespace tesseract
int value
const char * p
int ParamsTrainingFeatureByName(const char *name)
void tprintf(const char *format,...)
Definition: tprintf.cpp:41
T ClipToRange(const T &x, const T &lower_bound, const T &upper_bound)
Definition: helpers.h:105
void Init(int length)
Definition: bitvector.cpp:81
void SetValue(int index, bool value)
Definition: bitvector.h:84
int NumSetBits() const
Definition: bitvector.cpp:171
char * FGets(char *buffer, int buffer_size)
Definition: serialis.cpp:195
bool SaveToFile(const char *full_path) const
const std::vector< float > & weights() const
Definition: params_model.h:69
float ComputeCost(const float features[]) const
bool LoadFromFp(const char *lang, TFile *fp)
bool Equivalent(const ParamsModel &that) const
const std::vector< float > & weights_for_pass(PassEnum pass) const
Definition: params_model.h:72
void Copy(const ParamsModel &other_model)