tesseract v5.3.3.20231005
linlsq.h
Go to the documentation of this file.
1/**********************************************************************
2 * File: linlsq.h (Formerly llsq.h)
3 * Description: Linear Least squares fitting code.
4 * Author: Ray Smith
5 *
6 * (C) Copyright 1991, Hewlett-Packard Ltd.
7 ** Licensed under the Apache License, Version 2.0 (the "License");
8 ** you may not use this file except in compliance with the License.
9 ** You may obtain a copy of the License at
10 ** http://www.apache.org/licenses/LICENSE-2.0
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 *
17 **********************************************************************/
18
19#ifndef TESSERACT_CCSTRUCT_LINLSQ_H_
20#define TESSERACT_CCSTRUCT_LINLSQ_H_
21
22#include "points.h" // for FCOORD
23
24#include <algorithm> // for std::nth_element
25#include <cstdint> // for int32_t
26
27namespace tesseract {
28
30public:
31 LLSQ() { // constructor
32 clear(); // set to zeros
33 }
34 void clear(); // initialize
35
36 // Adds an element with a weight of 1.
37 void add(double x, double y);
38 // Adds an element with a specified weight.
39 void add(double x, double y, double weight);
40 // Adds a whole LLSQ.
41 void add(const LLSQ &other);
42 // Deletes an element with a weight of 1.
43 void remove(double x, double y);
44 int32_t count() const { // no of elements
45 return static_cast<int>(total_weight + 0.5);
46 }
47
48 double m() const; // get gradient
49 double c(double m) const; // get constant
50 double rms(double m, double c) const; // get error
51 double pearson() const; // get correlation coefficient.
52
53 // Returns the x,y means as an FCOORD.
54 FCOORD mean_point() const;
55
56 // Returns the average sum of squared perpendicular error from a line
57 // through mean_point() in the direction dir.
58 double rms_orth(const FCOORD &dir) const;
59
60 // Returns the direction of the fitted line as a unit vector, using the
61 // least mean squared perpendicular distance. The line runs through the
62 // mean_point, i.e. a point p on the line is given by:
63 // p = mean_point() + lambda * vector_fit() for some real number lambda.
64 // Note that the result (0<=x<=1, -1<=y<=-1) is directionally ambiguous
65 // and may be negated without changing its meaning, since a line is only
66 // unique to a range of pi radians.
67 // Modernists prefer to think of this as an Eigenvalue problem, but
68 // Pearson had the simple solution in 1901.
69 //
70 // Note that this is equivalent to returning the Principal Component in PCA,
71 // or the eigenvector corresponding to the largest eigenvalue in the
72 // covariance matrix.
73 FCOORD vector_fit() const;
74
75 // Returns the covariance.
76 double covariance() const {
77 if (total_weight > 0.0) {
78 return (sigxy - sigx * sigy / total_weight) / total_weight;
79 } else {
80 return 0.0;
81 }
82 }
83 double x_variance() const {
84 if (total_weight > 0.0) {
85 return (sigxx - sigx * sigx / total_weight) / total_weight;
86 } else {
87 return 0.0;
88 }
89 }
90 double y_variance() const {
91 if (total_weight > 0.0) {
92 return (sigyy - sigy * sigy / total_weight) / total_weight;
93 } else {
94 return 0.0;
95 }
96 }
97
98private:
99 double total_weight; // no of elements or sum of weights.
100 double sigx; // sum of x
101 double sigy; // sum of y
102 double sigxx; // sum x squared
103 double sigxy; // sum of xy
104 double sigyy; // sum y squared
105};
106
107// Returns the median value of the vector, given that the values are
108// circular, with the given modulus. Values may be signed or unsigned,
109// eg range from -pi to pi (modulus 2pi) or from 0 to 2pi (modulus 2pi).
110// NOTE that the array is shuffled, but the time taken is linear.
111// An assumption is made that most of the values are spread over no more than
112// half the range, but wrap-around is accounted for if the median is near
113// the wrap-around point.
114// Cannot be a member of vector, as it makes heavy use of LLSQ.
115// T must be an integer or float/double type.
116template <typename T>
117T MedianOfCircularValues(T modulus, std::vector<T> &v) {
118 LLSQ stats;
119 T halfrange = static_cast<T>(modulus / 2);
120 auto num_elements = v.size();
121 for (auto i : v) {
122 stats.add(i, i + halfrange);
123 }
124 bool offset_needed = stats.y_variance() < stats.x_variance();
125 if (offset_needed) {
126 for (auto i : v) {
127 i += halfrange;
128 }
129 }
130 auto median_index = num_elements / 2;
131 std::nth_element(v.begin(), v.begin() + median_index, v.end());
132 if (offset_needed) {
133 for (auto i : v) {
134 i -= halfrange;
135 }
136 }
137 return v[median_index];
138}
139
140} // namespace tesseract
141
142#endif // TESSERACT_CCSTRUCT_LINLSQ_H_
const double y
T MedianOfCircularValues(T modulus, std::vector< T > &v)
Definition: linlsq.h:117
void add(double x, double y)
Definition: linlsq.cpp:49
int32_t count() const
Definition: linlsq.h:44
double covariance() const
Definition: linlsq.h:76
double x_variance() const
Definition: linlsq.h:83
double y_variance() const
Definition: linlsq.h:90
#define TESS_API
Definition: export.h:32