tesseract v5.3.3.20231005
detlinefit.cpp
Go to the documentation of this file.
1
2// File: detlinefit.cpp
3// Description: Deterministic least median squares line fitting.
4// Author: Ray Smith
5//
6// (C) Copyright 2008, Google Inc.
7// Licensed under the Apache License, Version 2.0 (the "License");
8// you may not use this file except in compliance with the License.
9// You may obtain a copy of the License at
10// http://www.apache.org/licenses/LICENSE-2.0
11// Unless required by applicable law or agreed to in writing, software
12// distributed under the License is distributed on an "AS IS" BASIS,
13// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14// See the License for the specific language governing permissions and
15// limitations under the License.
16//
18
19#include "detlinefit.h"
20#include "helpers.h" // for IntCastRounded
21#include "statistc.h"
22#include "tprintf.h"
23
24#include <algorithm>
25#include <cfloat> // for FLT_MAX
26
27namespace tesseract {
28
29// The number of points to consider at each end.
30const int kNumEndPoints = 3;
31// The minimum number of points at which to switch to number of points
32// for badly fitted lines.
33// To ensure a sensible error metric, kMinPointsForErrorCount should be at
34// least kMaxRealDistance / (1 - %ile) where %ile is the fractile used in
35// ComputeUpperQuartileError.
37// The maximum real distance to use before switching to number of
38// mis-fitted points, which will get square-rooted for true distance.
39const int kMaxRealDistance = 2.0;
40
41DetLineFit::DetLineFit() : square_length_(0.0) {}
42
43// Delete all Added points.
45 pts_.clear();
46 distances_.clear();
47}
48
49// Add a new point. Takes a copy - the pt doesn't need to stay in scope.
50void DetLineFit::Add(const ICOORD &pt) {
51 pts_.emplace_back(pt, 0);
52}
53// Associates a half-width with the given point if a point overlaps the
54// previous point by more than half the width, and its distance is further
55// than the previous point, then the more distant point is ignored in the
56// distance calculation. Useful for ignoring i dots and other diacritics.
57void DetLineFit::Add(const ICOORD &pt, int halfwidth) {
58 pts_.emplace_back(pt, halfwidth);
59}
60
61// Fits a line to the points, ignoring the skip_first initial points and the
62// skip_last final points, returning the fitted line as a pair of points,
63// and the upper quartile error.
64double DetLineFit::Fit(int skip_first, int skip_last, ICOORD *pt1, ICOORD *pt2) {
65 // Do something sensible with no points.
66 if (pts_.empty()) {
67 pt1->set_x(0);
68 pt1->set_y(0);
69 *pt2 = *pt1;
70 return 0.0;
71 }
72 // Count the points and find the first and last kNumEndPoints.
73 int pt_count = pts_.size();
74 ICOORD *starts[kNumEndPoints];
75 if (skip_first >= pt_count) {
76 skip_first = pt_count - 1;
77 }
78 int start_count = 0;
79 int end_i = std::min(skip_first + kNumEndPoints, pt_count);
80 for (int i = skip_first; i < end_i; ++i) {
81 starts[start_count++] = &pts_[i].pt;
82 }
83 ICOORD *ends[kNumEndPoints];
84 if (skip_last >= pt_count) {
85 skip_last = pt_count - 1;
86 }
87 int end_count = 0;
88 end_i = std::max(0, pt_count - kNumEndPoints - skip_last);
89 for (int i = pt_count - 1 - skip_last; i >= end_i; --i) {
90 ends[end_count++] = &pts_[i].pt;
91 }
92 // 1 or 2 points need special treatment.
93 if (pt_count <= 2) {
94 *pt1 = *starts[0];
95 if (pt_count > 1) {
96 *pt2 = *ends[0];
97 } else {
98 *pt2 = *pt1;
99 }
100 return 0.0;
101 }
102 // Although with between 2 and 2*kNumEndPoints-1 points, there will be
103 // overlap in the starts, ends sets, this is OK and taken care of by the
104 // if (*start != *end) test below, which also tests for equal input points.
105 double best_uq = -1.0;
106 // Iterate each pair of points and find the best fitting line.
107 for (int i = 0; i < start_count; ++i) {
108 ICOORD *start = starts[i];
109 for (int j = 0; j < end_count; ++j) {
110 ICOORD *end = ends[j];
111 if (*start != *end) {
112 ComputeDistances(*start, *end);
113 // Compute the upper quartile error from the line.
114 double dist = EvaluateLineFit();
115 if (dist < best_uq || best_uq < 0.0) {
116 best_uq = dist;
117 *pt1 = *start;
118 *pt2 = *end;
119 }
120 }
121 }
122 }
123 // Finally compute the square root to return the true distance.
124 return best_uq > 0.0 ? sqrt(best_uq) : best_uq;
125}
126
127// Constrained fit with a supplied direction vector. Finds the best line_pt,
128// that is one of the supplied points having the median cross product with
129// direction, ignoring points that have a cross product outside of the range
130// [min_dist, max_dist]. Returns the resulting error metric using the same
131// reduced set of points.
132// *Makes use of floating point arithmetic*
133double DetLineFit::ConstrainedFit(const FCOORD &direction, double min_dist, double max_dist,
134 bool debug, ICOORD *line_pt) {
135 ComputeConstrainedDistances(direction, min_dist, max_dist);
136 // Do something sensible with no points or computed distances.
137 if (pts_.empty() || distances_.empty()) {
138 line_pt->set_x(0);
139 line_pt->set_y(0);
140 return 0.0;
141 }
142 auto median_index = distances_.size() / 2;
143 std::nth_element(distances_.begin(), distances_.begin() + median_index, distances_.end());
144 *line_pt = distances_[median_index].data();
145 if (debug) {
146 tprintf("Constrained fit to dir %g, %g = %d, %d :%zu distances:\n", direction.x(), direction.y(),
147 line_pt->x(), line_pt->y(), distances_.size());
148 for (unsigned i = 0; i < distances_.size(); ++i) {
149 tprintf("%d: %d, %d -> %g\n", i, distances_[i].data().x(), distances_[i].data().y(),
150 distances_[i].key());
151 }
152 tprintf("Result = %zu\n", median_index);
153 }
154 // Center distances on the fitted point.
155 double dist_origin = direction * *line_pt;
156 for (auto &distance : distances_) {
157 distance.key() -= dist_origin;
158 }
159 return sqrt(EvaluateLineFit());
160}
161
162// Returns true if there were enough points at the last call to Fit or
163// ConstrainedFit for the fitted points to be used on a badly fitted line.
165 return distances_.size() >= kMinPointsForErrorCount;
166}
167
168// Backwards compatible fit returning a gradient and constant.
169// Deprecated. Prefer Fit(ICOORD*, ICOORD*) where possible, but use this
170// function in preference to the LMS class.
171double DetLineFit::Fit(float *m, float *c) {
172 ICOORD start, end;
173 double error = Fit(&start, &end);
174 if (end.x() != start.x()) {
175 *m = static_cast<float>(end.y() - start.y()) / (end.x() - start.x());
176 *c = start.y() - *m * start.x();
177 } else {
178 *m = 0.0f;
179 *c = 0.0f;
180 }
181 return error;
182}
183
184// Backwards compatible constrained fit with a supplied gradient.
185// Deprecated. Use ConstrainedFit(const FCOORD& direction) where possible
186// to avoid potential difficulties with infinite gradients.
187double DetLineFit::ConstrainedFit(double m, float *c) {
188 // Do something sensible with no points.
189 if (pts_.empty()) {
190 *c = 0.0f;
191 return 0.0;
192 }
193 double cos = 1.0 / sqrt(1.0 + m * m);
194 FCOORD direction(cos, m * cos);
195 ICOORD line_pt;
196 double error = ConstrainedFit(direction, -FLT_MAX, FLT_MAX, false, &line_pt);
197 *c = line_pt.y() - line_pt.x() * m;
198 return error;
199}
200
201// Computes and returns the squared evaluation metric for a line fit.
202double DetLineFit::EvaluateLineFit() {
203 // Compute the upper quartile error from the line.
204 double dist = ComputeUpperQuartileError();
205 if (distances_.size() >= kMinPointsForErrorCount && dist > kMaxRealDistance * kMaxRealDistance) {
206 // Use the number of mis-fitted points as the error metric, as this
207 // gives a better measure of fit for badly fitted lines where more
208 // than a quarter are badly fitted.
209 double threshold = kMaxRealDistance * sqrt(square_length_);
210 dist = NumberOfMisfittedPoints(threshold);
211 }
212 return dist;
213}
214
215// Computes the absolute error distances of the points from the line,
216// and returns the squared upper-quartile error distance.
217double DetLineFit::ComputeUpperQuartileError() {
218 int num_errors = distances_.size();
219 if (num_errors == 0) {
220 return 0.0;
221 }
222 // Get the absolute values of the errors.
223 for (int i = 0; i < num_errors; ++i) {
224 if (distances_[i].key() < 0) {
225 distances_[i].key() = -distances_[i].key();
226 }
227 }
228 // Now get the upper quartile distance.
229 auto index = 3 * num_errors / 4;
230 std::nth_element(distances_.begin(), distances_.begin() + index, distances_.end());
231 double dist = distances_[index].key();
232 // The true distance is the square root of the dist squared / square_length.
233 // Don't bother with the square root. Just return the square distance.
234 return square_length_ > 0.0 ? dist * dist / square_length_ : 0.0;
235}
236
237// Returns the number of sample points that have an error more than threshold.
238int DetLineFit::NumberOfMisfittedPoints(double threshold) const {
239 int num_misfits = 0;
240 int num_dists = distances_.size();
241 // Get the absolute values of the errors.
242 for (int i = 0; i < num_dists; ++i) {
243 if (distances_[i].key() > threshold) {
244 ++num_misfits;
245 }
246 }
247 return num_misfits;
248}
249
250// Computes all the cross product distances of the points from the line,
251// storing the actual (signed) cross products in distances.
252// Ignores distances of points that are further away than the previous point,
253// and overlaps the previous point by at least half.
254void DetLineFit::ComputeDistances(const ICOORD &start, const ICOORD &end) {
255 distances_.clear();
256 ICOORD line_vector = end;
257 line_vector -= start;
258 square_length_ = line_vector.sqlength();
259 int line_length = IntCastRounded(sqrt(square_length_));
260 // Compute the distance of each point from the line.
261 int prev_abs_dist = 0;
262 int prev_dot = 0;
263 for (unsigned i = 0; i < pts_.size(); ++i) {
264 ICOORD pt_vector = pts_[i].pt;
265 pt_vector -= start;
266 int dot = line_vector % pt_vector;
267 // Compute |line_vector||pt_vector|sin(angle between)
268 int dist = line_vector * pt_vector;
269 int abs_dist = dist < 0 ? -dist : dist;
270 if (abs_dist > prev_abs_dist && i > 0) {
271 // Ignore this point if it overlaps the previous one.
272 int separation = abs(dot - prev_dot);
273 if (separation < line_length * pts_[i].halfwidth ||
274 separation < line_length * pts_[i - 1].halfwidth) {
275 continue;
276 }
277 }
278 distances_.emplace_back(dist, pts_[i].pt);
279 prev_abs_dist = abs_dist;
280 prev_dot = dot;
281 }
282}
283
284// Computes all the cross product distances of the points perpendicular to
285// the given direction, ignoring distances outside of the give distance range,
286// storing the actual (signed) cross products in distances_.
287void DetLineFit::ComputeConstrainedDistances(const FCOORD &direction, double min_dist,
288 double max_dist) {
289 distances_.clear();
290 square_length_ = direction.sqlength();
291 // Compute the distance of each point from the line.
292 for (auto &pt : pts_) {
293 FCOORD pt_vector = pt.pt;
294 // Compute |line_vector||pt_vector|sin(angle between)
295 double dist = direction * pt_vector;
296 if (min_dist <= dist && dist <= max_dist) {
297 distances_.emplace_back(dist, pt.pt);
298 }
299 }
300}
301
302} // namespace tesseract.
UnicodeText::const_iterator::difference_type distance(const UnicodeText::const_iterator &first, const UnicodeText::const_iterator &last)
Definition: unicodetext.cc:44
const double y
const int kMaxRealDistance
Definition: detlinefit.cpp:39
void tprintf(const char *format,...)
Definition: tprintf.cpp:41
int IntCastRounded(double x)
Definition: helpers.h:170
const int kMinPointsForErrorCount
Definition: detlinefit.cpp:36
const int kNumEndPoints
Definition: detlinefit.cpp:30
void Add(const ICOORD &pt)
Definition: detlinefit.cpp:50
double ConstrainedFit(const FCOORD &direction, double min_dist, double max_dist, bool debug, ICOORD *line_pt)
Definition: detlinefit.cpp:133
double Fit(ICOORD *pt1, ICOORD *pt2)
Definition: detlinefit.h:73
bool SufficientPointsForIndependentFit() const
Definition: detlinefit.cpp:164
integer coordinate
Definition: points.h:36
void set_x(TDimension xin)
rewrite function
Definition: points.h:67
TDimension y() const
access_function
Definition: points.h:62
void set_y(TDimension yin)
rewrite function
Definition: points.h:71
TDimension x() const
access function
Definition: points.h:58
float y() const
Definition: points.h:209
float x() const
Definition: points.h:206