tesseract v5.3.3.20231005
cntraining.cpp
Go to the documentation of this file.
1/******************************************************************************
2 ** Filename: cntraining.cpp
3 ** Purpose: Generates a normproto and pffmtable.
4 ** Author: Dan Johnson
5 ** Revisment: Christy Russon
6 **
7 ** (c) Copyright Hewlett-Packard Company, 1988.
8 ** Licensed under the Apache License, Version 2.0 (the "License");
9 ** you may not use this file except in compliance with the License.
10 ** You may obtain a copy of the License at
11 ** http://www.apache.org/licenses/LICENSE-2.0
12 ** Unless required by applicable law or agreed to in writing, software
13 ** distributed under the License is distributed on an "AS IS" BASIS,
14 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 ** See the License for the specific language governing permissions and
16 ** limitations under the License.
17 ******************************************************************************/
18
19/*----------------------------------------------------------------------------
20 Include Files and Type Defines
21----------------------------------------------------------------------------*/
22#include <tesseract/unichar.h>
23#include <cmath>
24#include <cstdio>
25#include <cstring>
26#include "cluster.h"
27#include "clusttool.h"
28#include "commontraining.h"
29#include "featdefs.h"
30#include "ocrfeatures.h"
31#include "oldlist.h"
32
33#define PROGRAM_FEATURE_TYPE "cn"
34
35using namespace tesseract;
36
37/*----------------------------------------------------------------------------
38 Private Function Prototypes
39----------------------------------------------------------------------------*/
40
41static void WriteNormProtos(const char *Directory, LIST LabeledProtoList,
42 const FEATURE_DESC_STRUCT *feature_desc);
43
44static void WriteProtos(FILE *File, uint16_t N, LIST ProtoList, bool WriteSigProtos,
45 bool WriteInsigProtos);
46
47/*----------------------------------------------------------------------------
48 Global Data Definitions and Declarations
49----------------------------------------------------------------------------*/
50/* global variable to hold configuration parameters to control clustering */
51//-M 0.025 -B 0.05 -I 0.8 -C 1e-3
52static const CLUSTERCONFIG CNConfig = {elliptical, 0.025, 0.05, 0.8, 1e-3, 0};
53
54/*----------------------------------------------------------------------------
55 Public Code
56----------------------------------------------------------------------------*/
57
103int main(int argc, char *argv[]) {
104 tesseract::CheckSharedLibraryVersion();
105
106 // Set the global Config parameters before parsing the command line.
107 Config = CNConfig;
108
109 LIST CharList = NIL_LIST;
110 CLUSTERER *Clusterer = nullptr;
111 LIST ProtoList = NIL_LIST;
112 LIST NormProtoList = NIL_LIST;
113 LIST pCharList;
114 LABELEDLIST CharSample;
115 FEATURE_DEFS_STRUCT FeatureDefs;
116 InitFeatureDefs(&FeatureDefs);
117
118 ParseArguments(&argc, &argv);
119 int num_fonts = 0;
120 for (const char *PageName = *++argv; PageName != nullptr; PageName = *++argv) {
121 printf("Reading %s ...\n", PageName);
122 FILE *TrainingPage = fopen(PageName, "rb");
123 ASSERT_HOST(TrainingPage);
124 if (TrainingPage) {
125 ReadTrainingSamples(FeatureDefs, PROGRAM_FEATURE_TYPE, 100, nullptr, TrainingPage, &CharList);
126 fclose(TrainingPage);
127 ++num_fonts;
128 }
129 }
130 printf("Clustering ...\n");
131 // To allow an individual font to form a separate cluster,
132 // reduce the min samples:
133 // Config.MinSamples = 0.5 / num_fonts;
134 pCharList = CharList;
135 // The norm protos will count the source protos, so we keep them here in
136 // freeable_protos, so they can be freed later.
137 std::vector<LIST> freeable_protos;
138 iterate(pCharList) {
139 // Cluster
140 CharSample = reinterpret_cast<LABELEDLIST>(pCharList->first_node());
141 Clusterer = SetUpForClustering(FeatureDefs, CharSample, PROGRAM_FEATURE_TYPE);
142 if (Clusterer == nullptr) { // To avoid a SIGSEGV
143 fprintf(stderr, "Error: nullptr clusterer!\n");
144 return EXIT_FAILURE;
145 }
146 float SavedMinSamples = Config.MinSamples;
147 // To disable the tendency to produce a single cluster for all fonts,
148 // make MagicSamples an impossible to achieve number:
149 // Config.MagicSamples = CharSample->SampleCount * 10;
150 Config.MagicSamples = CharSample->SampleCount;
151 while (Config.MinSamples > 0.001) {
152 ProtoList = ClusterSamples(Clusterer, &Config);
153 if (NumberOfProtos(ProtoList, true, false) > 0) {
154 break;
155 } else {
156 Config.MinSamples *= 0.95;
157 printf(
158 "0 significant protos for %s."
159 " Retrying clustering with MinSamples = %f%%\n",
160 CharSample->Label.c_str(), Config.MinSamples);
161 }
162 }
163 Config.MinSamples = SavedMinSamples;
164 AddToNormProtosList(&NormProtoList, ProtoList, CharSample->Label);
165 freeable_protos.push_back(ProtoList);
166 FreeClusterer(Clusterer);
167 }
168 FreeTrainingSamples(CharList);
169 int desc_index = ShortNameToFeatureType(FeatureDefs, PROGRAM_FEATURE_TYPE);
170 WriteNormProtos(FLAGS_D.c_str(), NormProtoList, FeatureDefs.FeatureDesc[desc_index]);
171 FreeNormProtoList(NormProtoList);
172 for (auto &freeable_proto : freeable_protos) {
173 FreeProtoList(&freeable_proto);
174 }
175 printf("\n");
176 return EXIT_SUCCESS;
177} // main
178
179/*----------------------------------------------------------------------------
180 Private Code
181----------------------------------------------------------------------------*/
182
183/*----------------------------------------------------------------------------*/
192static void WriteNormProtos(const char *Directory, LIST LabeledProtoList,
193 const FEATURE_DESC_STRUCT *feature_desc) {
194 FILE *File;
195 LABELEDLIST LabeledProto;
196 int N;
197
198 std::string Filename = "";
199 if (Directory != nullptr && Directory[0] != '\0') {
200 Filename += Directory;
201 Filename += "/";
202 }
203 Filename += "normproto";
204 printf("\nWriting %s ...", Filename.c_str());
205 File = fopen(Filename.c_str(), "wb");
207 fprintf(File, "%0d\n", feature_desc->NumParams);
208 WriteParamDesc(File, feature_desc->NumParams, feature_desc->ParamDesc);
209 iterate(LabeledProtoList) {
210 LabeledProto = reinterpret_cast<LABELEDLIST>(LabeledProtoList->first_node());
211 N = NumberOfProtos(LabeledProto->List, true, false);
212 if (N < 1) {
213 printf(
214 "\nError! Not enough protos for %s: %d protos"
215 " (%d significant protos"
216 ", %d insignificant protos)\n",
217 LabeledProto->Label.c_str(), N, NumberOfProtos(LabeledProto->List, true, false),
218 NumberOfProtos(LabeledProto->List, false, true));
219 exit(1);
220 }
221 fprintf(File, "\n%s %d\n", LabeledProto->Label.c_str(), N);
222 WriteProtos(File, feature_desc->NumParams, LabeledProto->List, true, false);
223 }
224 fclose(File);
225
226} // WriteNormProtos
227
228/*-------------------------------------------------------------------------*/
229
230static void WriteProtos(FILE *File, uint16_t N, LIST ProtoList, bool WriteSigProtos,
231 bool WriteInsigProtos) {
232 PROTOTYPE *Proto;
233
234 // write prototypes
235 iterate(ProtoList) {
236 Proto = reinterpret_cast<PROTOTYPE *>(ProtoList->first_node());
237 if ((Proto->Significant && WriteSigProtos) || (!Proto->Significant && WriteInsigProtos)) {
238 WritePrototype(File, N, Proto);
239 }
240 }
241} // WriteProtos
#define ASSERT_HOST(x)
Definition: errcode.h:54
#define iterate(l)
Definition: oldlist.h:91
#define NIL_LIST
Definition: oldlist.h:75
int main(int argc, char *argv[])
Definition: cntraining.cpp:103
#define PROGRAM_FEATURE_TYPE
Definition: cntraining.cpp:33
uint32_t ShortNameToFeatureType(const FEATURE_DEFS_STRUCT &FeatureDefs, const char *ShortName)
Definition: featdefs.cpp:203
void ReadTrainingSamples(const FEATURE_DEFS_STRUCT &feature_definitions, const char *feature_name, int max_samples, UNICHARSET *unicharset, FILE *file, LIST *training_samples)
void WriteParamDesc(FILE *File, uint16_t N, const PARAM_DESC ParamDesc[])
Definition: clusttool.cpp:244
void ParseArguments(int *argc, char ***argv)
void FreeNormProtoList(LIST CharList)
CLUSTERER * SetUpForClustering(const FEATURE_DEFS_STRUCT &FeatureDefs, LABELEDLIST char_sample, const char *program_feature_type)
CLUSTERCONFIG Config
void AddToNormProtosList(LIST *NormProtoList, LIST ProtoList, const std::string &CharName)
void InitFeatureDefs(FEATURE_DEFS_STRUCT *featuredefs)
Definition: featdefs.cpp:87
void WritePrototype(FILE *File, uint16_t N, PROTOTYPE *Proto)
Definition: clusttool.cpp:271
void FreeProtoList(LIST *ProtoList)
Definition: cluster.cpp:1597
void FreeTrainingSamples(LIST CharList)
void FreeClusterer(CLUSTERER *Clusterer)
Definition: cluster.cpp:1575
int NumberOfProtos(LIST ProtoList, bool CountSigProtos, bool CountInsigProtos)
@ elliptical
Definition: cluster.h:53
LIST ClusterSamples(CLUSTERER *Clusterer, CLUSTERCONFIG *Config)
Definition: cluster.cpp:1543
const FEATURE_DESC_STRUCT * FeatureDesc[NUM_FEATURE_TYPES]
Definition: featdefs.h:43
const PARAM_DESC * ParamDesc
Definition: ocrfeatures.h:54
list_rec * first_node()
Definition: oldlist.h:107