76 {
77 tesseract::CheckSharedLibraryVersion();
79#if defined(__USE_GNU)
80 if (FLAGS_debug_float) {
81
82 feenableexcept(FE_DIVBYZERO | FE_OVERFLOW | FE_INVALID);
83 }
84#endif
85 if (FLAGS_model_output.empty()) {
86 tprintf(
"Must provide a --model_output!\n");
87 return EXIT_FAILURE;
88 }
89 if (FLAGS_traineddata.empty()) {
90 tprintf(
"Must provide a --traineddata see training documentation\n");
91 return EXIT_FAILURE;
92 }
93
94
95 std::string test_file = FLAGS_model_output.c_str();
96 test_file += "_wtest";
97 FILE *f = fopen(test_file.c_str(), "wb");
98 if (f != nullptr) {
99 fclose(f);
100 if (remove(test_file.c_str()) != 0) {
101 tprintf(
"Error, failed to remove %s: %s\n", test_file.c_str(), strerror(errno));
102 return EXIT_FAILURE;
103 }
104 } else {
105 tprintf(
"Error, model output cannot be written: %s\n", strerror(errno));
106 return EXIT_FAILURE;
107 }
108
109
110 std::string checkpoint_file = FLAGS_model_output.c_str();
111 checkpoint_file += "_checkpoint";
112 std::string checkpoint_bak = checkpoint_file + ".bak";
114 FLAGS_debug_interval,
115 static_cast<int64_t>(FLAGS_max_image_MB) * 1048576);
116 if (!trainer.InitCharSet(FLAGS_traineddata.c_str())) {
117 tprintf(
"Error, failed to read %s\n", FLAGS_traineddata.c_str());
118 return EXIT_FAILURE;
119 }
120
121
122
123 if (FLAGS_stop_training || FLAGS_debug_network) {
124 if (!trainer.TryLoadingCheckpoint(FLAGS_continue_from.c_str(), nullptr)) {
125 tprintf(
"Failed to read continue from: %s\n", FLAGS_continue_from.c_str());
126 return EXIT_FAILURE;
127 }
128 if (FLAGS_debug_network) {
129 trainer.DebugNetwork();
130 } else {
131 if (FLAGS_convert_to_int) {
132 trainer.ConvertToInt();
133 }
134 if (!trainer.SaveTraineddata(FLAGS_model_output.c_str())) {
135 tprintf(
"Failed to write recognition model : %s\n", FLAGS_model_output.c_str());
136 }
137 }
138 return EXIT_SUCCESS;
139 }
140
141
142 if (FLAGS_train_listfile.empty()) {
143 tprintf(
"Must supply a list of training filenames! --train_listfile\n");
144 return EXIT_FAILURE;
145 }
146 std::vector<std::string> filenames;
148 tprintf(
"Failed to load list of training filenames from %s\n", FLAGS_train_listfile.c_str());
149 return EXIT_FAILURE;
150 }
151
152
153 if (trainer.TryLoadingCheckpoint(checkpoint_file.c_str(), nullptr) ||
154 trainer.TryLoadingCheckpoint(checkpoint_bak.c_str(), nullptr)) {
155 tprintf(
"Successfully restored trainer from %s\n", checkpoint_file.c_str());
156 } else {
157 if (!FLAGS_continue_from.empty()) {
158
159 if (!trainer.TryLoadingCheckpoint(FLAGS_continue_from.c_str(),
160 FLAGS_append_index >= 0 ? FLAGS_continue_from.c_str()
161 : FLAGS_old_traineddata.c_str())) {
162 tprintf(
"Failed to continue from: %s\n", FLAGS_continue_from.c_str());
163 return EXIT_FAILURE;
164 }
165 tprintf(
"Continuing from %s\n", FLAGS_continue_from.c_str());
166 if (FLAGS_reset_learning_rate) {
167 trainer.SetLearningRate(FLAGS_learning_rate);
168 tprintf(
"Set learning rate to %f\n",
static_cast<float>(FLAGS_learning_rate));
169 }
170 trainer.InitIterations();
171 }
172 if (FLAGS_continue_from.empty() || FLAGS_append_index >= 0) {
173 if (FLAGS_append_index >= 0) {
174 tprintf(
"Appending a new network to an old one!!");
175 if (FLAGS_continue_from.empty()) {
176 tprintf(
"Must set --continue_from for appending!\n");
177 return EXIT_FAILURE;
178 }
179 }
180
181 if (!trainer.InitNetwork(FLAGS_net_spec.c_str(), FLAGS_append_index, FLAGS_net_mode,
182 FLAGS_weight_range, FLAGS_learning_rate, FLAGS_momentum,
183 FLAGS_adam_beta)) {
184 tprintf(
"Failed to create network from spec: %s\n", FLAGS_net_spec.c_str());
185 return EXIT_FAILURE;
186 }
187 trainer.set_perfect_delay(FLAGS_perfect_sample_delay);
188 }
189 }
190 if (!trainer.LoadAllTrainingData(
191 filenames,
193 FLAGS_randomly_rotate)) {
194 tprintf(
"Load of images failed!!\n");
195 return EXIT_FAILURE;
196 }
197
200 if (!FLAGS_eval_listfile.empty()) {
201 using namespace std::placeholders;
202 if (!tester.LoadAllEvalData(FLAGS_eval_listfile.c_str())) {
203 tprintf(
"Failed to load eval data from: %s\n", FLAGS_eval_listfile.c_str());
204 return EXIT_FAILURE;
205 }
207 }
208
209 int max_iterations = FLAGS_max_iterations;
210 if (max_iterations < 0) {
211
212 max_iterations = filenames.size() * (-max_iterations);
213 } else if (max_iterations == 0) {
214
215 max_iterations = INT_MAX;
216 }
217
218 do {
219
220 int iteration = trainer.training_iteration();
222 iteration < target_iteration && iteration < max_iterations;
223 iteration = trainer.training_iteration()) {
224 trainer.TrainOnLine(&trainer, false);
225 }
226 std::stringstream log_str;
227 log_str.imbue(std::locale::classic());
228 trainer.MaintainCheckpoints(tester_callback, log_str);
229 tprintf(
"%s\n", log_str.str().c_str());
230 } while (trainer.best_error_rate() > FLAGS_target_error_rate &&
231 (trainer.training_iteration() < max_iterations));
232 tprintf(
"Finished! Selected model with minimal training error rate (BCER) = %g\n",
233 trainer.best_error_rate());
234 return EXIT_SUCCESS;
235}
const int kNumPagesPerBatch
void tprintf(const char *format,...)
void ParseArguments(int *argc, char ***argv)
std::function< std::string(int, const double *, const TessdataManager &, int)> TestCallback
bool LoadFileLinesToStrings(const char *filename, std::vector< std::string > *lines)
std::string RunEvalAsync(int iteration, const double *training_errors, const TessdataManager &model_mgr, int training_stage)