tesseract v5.3.3.20231005
tfnetwork.cpp
Go to the documentation of this file.
1
2// File: tfnetwork.cpp
3// Description: Encapsulation of an entire tensorflow graph as a
4// Tesseract Network.
5// Author: Ray Smith
6//
7// (C) Copyright 2016, Google Inc.
8// Licensed under the Apache License, Version 2.0 (the "License");
9// you may not use this file except in compliance with the License.
10// You may obtain a copy of the License at
11// http://www.apache.org/licenses/LICENSE-2.0
12// Unless required by applicable law or agreed to in writing, software
13// distributed under the License is distributed on an "AS IS" BASIS,
14// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15// See the License for the specific language governing permissions and
16// limitations under the License.
18#ifdef INCLUDE_TENSORFLOW
19
20# include "tfnetwork.h"
21
22# include <allheaders.h>
23# include "input.h"
24# include "networkscratch.h"
25
26using tensorflow::Status;
27using tensorflow::Tensor;
28using tensorflow::TensorShape;
29
30namespace tesseract {
31
32TFNetwork::TFNetwork(const char *name) : Network(NT_TENSORFLOW, name, 0, 0) {}
33
34int TFNetwork::InitFromProtoStr(const std::string &proto_str) {
35 if (!model_proto_.ParseFromString(proto_str))
36 return 0;
37 return InitFromProto();
38}
39
40// Writes to the given file. Returns false in case of error.
41// Should be overridden by subclasses, but called by their Serialize.
42bool TFNetwork::Serialize(TFile *fp) const {
43 if (!Network::Serialize(fp))
44 return false;
45 std::string proto_str;
46 model_proto_.SerializeToString(&proto_str);
47 // TODO: optimize and avoid copy from proto_str to data.
48 std::vector<char> data(proto_str.size());
49 memcpy(&data[0], proto_str.data(), proto_str.size());
50 return fp->Serialize(data);
51}
52
53// Reads from the given file. Returns false in case of error.
54// Should be overridden by subclasses, but NOT called by their DeSerialize.
55bool TFNetwork::DeSerialize(TFile *fp) {
56 std::vector<char> data;
57 if (!fp->DeSerialize(data))
58 return false;
59 if (!model_proto_.ParseFromArray(&data[0], data.size())) {
60 return false;
61 }
62 return InitFromProto();
63}
64
65// Runs forward propagation of activations on the input line.
66// See Network for a detailed discussion of the arguments.
67void TFNetwork::Forward(bool debug, const NetworkIO &input, const TransposedArray *input_transpose,
68 NetworkScratch *scratch, NetworkIO *output) {
69 std::vector<std::pair<std::string, Tensor>> tf_inputs;
70 int depth = input_shape_.depth();
71 ASSERT_HOST(depth == input.NumFeatures());
72 // TODO(rays) Allow batching. For now batch_size = 1.
73 const StrideMap &stride_map = input.stride_map();
74 // TF requires a tensor of shape float[batch, height, width, depth].
75 TensorShape shape{1, stride_map.Size(FD_HEIGHT), stride_map.Size(FD_WIDTH), depth};
76 Tensor input_tensor(tensorflow::DT_FLOAT, shape);
77 // The flat() member gives a 1d array, with a data() member to get the data.
78 auto eigen_tensor = input_tensor.flat<float>();
79 memcpy(eigen_tensor.data(), input.f(0), input.Width() * depth * sizeof(input.f(0)[0]));
80 // Add the tensor to the vector of inputs.
81 tf_inputs.emplace_back(model_proto_.image_input(), input_tensor);
82
83 // Provide tensors giving the width and/or height of the image if they are
84 // required. Some tf ops require a separate tensor with knowledge of the
85 // size of the input as they cannot obtain it from the input tensor. This is
86 // usually true in the case of ops that process a batch of variable-sized
87 // objects.
88 if (!model_proto_.image_widths().empty()) {
89 TensorShape size_shape{1};
90 Tensor width_tensor(tensorflow::DT_INT64, size_shape);
91 auto eigen_wtensor = width_tensor.flat<tensorflow::int64>();
92 *eigen_wtensor.data() = stride_map.Size(FD_WIDTH);
93 tf_inputs.emplace_back(model_proto_.image_widths(), width_tensor);
94 }
95 if (!model_proto_.image_heights().empty()) {
96 TensorShape size_shape{1};
97 Tensor height_tensor(tensorflow::DT_INT64, size_shape);
98 auto eigen_htensor = height_tensor.flat<tensorflow::int64>();
99 *eigen_htensor.data() = stride_map.Size(FD_HEIGHT);
100 tf_inputs.emplace_back(model_proto_.image_heights(), height_tensor);
101 }
102 std::vector<std::string> target_layers = {model_proto_.output_layer()};
103 std::vector<Tensor> outputs;
104 Status s = session_->Run(tf_inputs, target_layers, {}, &outputs);
105 if (!s.ok())
106 tprintf("session->Run failed:%s\n", s.error_message().c_str());
107 ASSERT_HOST(s.ok());
108 ASSERT_HOST(outputs.size() == 1);
109 const Tensor &output_tensor = outputs[0];
110 // Check the dimensions of the output.
111 ASSERT_HOST(output_tensor.shape().dims() == 3);
112 int output_batch = output_tensor.shape().dim_size(0);
113 int output_steps = output_tensor.shape().dim_size(1);
114 int output_depth = output_tensor.shape().dim_size(2);
115 ASSERT_HOST(output_batch == 1);
116 ASSERT_HOST(output_depth == output_shape_.depth());
117 output->Resize2d(false, output_steps, output_depth);
118 auto eigen_output = output_tensor.flat<float>();
119 memcpy(output->f(0), eigen_output.data(), output_steps * output_depth * sizeof(output->f(0)[0]));
120}
121
122int TFNetwork::InitFromProto() {
123 spec_ = model_proto_.spec();
124 input_shape_.SetShape(model_proto_.batch_size(), std::max(0, model_proto_.y_size()),
125 std::max(0, model_proto_.x_size()), model_proto_.depth());
126 output_shape_.SetShape(model_proto_.batch_size(), 1, 0, model_proto_.num_classes());
127 output_shape_.set_loss_type(model_proto_.using_ctc() ? LT_CTC : LT_SOFTMAX);
128 ni_ = input_shape_.height();
129 no_ = output_shape_.depth();
130 // Initialize the session_ with the graph. Since we can't get the graph
131 // back from the session_, we have to keep the proto as well
132 tensorflow::SessionOptions options;
133 session_.reset(NewSession(options));
134 Status s = session_->Create(model_proto_.graph());
135 if (s.ok())
136 return model_proto_.global_step();
137 tprintf("Session_->Create returned '%s'\n", s.error_message().c_str());
138 return 0;
139}
140
141} // namespace tesseract
142
143#endif // ifdef INCLUDE_TENSORFLOW
#define ASSERT_HOST(x)
Definition: errcode.h:54
void tprintf(const char *format,...)
Definition: tprintf.cpp:41
bool DeSerialize(bool swap, FILE *fp, std::vector< T > &data)
Definition: helpers.h:205
bool Serialize(FILE *fp, const std::vector< T > &data)
Definition: helpers.h:236
@ NT_TENSORFLOW
Definition: network.h:76
@ FD_WIDTH
Definition: stridemap.h:35
@ FD_HEIGHT
Definition: stridemap.h:34