tesseract v5.3.3.20231005
network.h
Go to the documentation of this file.
1
2// File: network.h
3// Description: Base class for neural network implementations.
4// Author: Ray Smith
5//
6// (C) Copyright 2013, Google Inc.
7// Licensed under the Apache License, Version 2.0 (the "License");
8// you may not use this file except in compliance with the License.
9// You may obtain a copy of the License at
10// http://www.apache.org/licenses/LICENSE-2.0
11// Unless required by applicable law or agreed to in writing, software
12// distributed under the License is distributed on an "AS IS" BASIS,
13// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14// See the License for the specific language governing permissions and
15// limitations under the License.
17
18#ifndef TESSERACT_LSTM_NETWORK_H_
19#define TESSERACT_LSTM_NETWORK_H_
20
21#include "helpers.h"
22#include "matrix.h"
23#include "networkio.h"
24#include "serialis.h"
25#include "static_shape.h"
26#include "tprintf.h"
27
28#include <cmath>
29#include <cstdio>
30
31struct Pix;
32
33namespace tesseract {
34
35class ScrollView;
36class TBOX;
37class ImageData;
38class NetworkScratch;
39
40// Enum to store the run-time type of a Network. Keep in sync with kTypeNames.
42 NT_NONE, // The naked base class.
43 NT_INPUT, // Inputs from an image.
44 // Plumbing networks combine other networks or rearrange the inputs.
45 NT_CONVOLVE, // Duplicates inputs in a sliding window neighborhood.
46 NT_MAXPOOL, // Chooses the max result from a rectangle.
47 NT_PARALLEL, // Runs networks in parallel.
48 NT_REPLICATED, // Runs identical networks in parallel.
49 NT_PAR_RL_LSTM, // Runs LTR and RTL LSTMs in parallel.
50 NT_PAR_UD_LSTM, // Runs Up and Down LSTMs in parallel.
51 NT_PAR_2D_LSTM, // Runs 4 LSTMs in parallel.
52 NT_SERIES, // Executes a sequence of layers.
53 NT_RECONFIG, // Scales the time/y size but makes the output deeper.
54 NT_XREVERSED, // Reverses the x direction of the inputs/outputs.
55 NT_YREVERSED, // Reverses the y-direction of the inputs/outputs.
56 NT_XYTRANSPOSE, // Transposes x and y (for just a single op).
57 // Functional networks actually calculate stuff.
58 NT_LSTM, // Long-Short-Term-Memory block.
59 NT_LSTM_SUMMARY, // LSTM that only keeps its last output.
60 NT_LOGISTIC, // Fully connected logistic nonlinearity.
61 NT_POSCLIP, // Fully connected rect lin version of logistic.
62 NT_SYMCLIP, // Fully connected rect lin version of tanh.
63 NT_TANH, // Fully connected with tanh nonlinearity.
64 NT_RELU, // Fully connected with rectifier nonlinearity.
65 NT_LINEAR, // Fully connected with no nonlinearity.
66 NT_SOFTMAX, // Softmax uses exponential normalization, with CTC.
67 NT_SOFTMAX_NO_CTC, // Softmax uses exponential normalization, no CTC.
68 // The SOFTMAX LSTMs both have an extra softmax layer on top, but inside, with
69 // the outputs fed back to the input of the LSTM at the next timestep.
70 // The ENCODED version binary encodes the softmax outputs, providing log2 of
71 // the number of outputs as additional inputs, and the other version just
72 // provides all the softmax outputs as additional inputs.
73 NT_LSTM_SOFTMAX, // 1-d LSTM with built-in fully connected softmax.
74 NT_LSTM_SOFTMAX_ENCODED, // 1-d LSTM with built-in binary encoded softmax.
75 // A TensorFlow graph encapsulated as a Tesseract network.
77
78 NT_COUNT // Array size.
79};
80
81// Enum of Network behavior flags. Can in theory be set for each individual
82// network element.
84 // Network forward/backprop behavior.
85 NF_LAYER_SPECIFIC_LR = 64, // Separate learning rate for each layer.
86 NF_ADAM = 128, // Weight-specific learning rate.
87};
88
89// State of training and desired state used in SetEnableTraining.
91 // Valid states of training_.
92 TS_DISABLED, // Disabled permanently.
93 TS_ENABLED, // Enabled for backprop and to write a training dump.
94 // Re-enable from ANY disabled state.
95 TS_TEMP_DISABLE, // Temporarily disabled to write a recognition dump.
96 // Valid only for SetEnableTraining.
97 TS_RE_ENABLE, // Re-Enable from TS_TEMP_DISABLE, but not TS_DISABLED.
98};
99
100// Base class for network types. Not quite an abstract base class, but almost.
101// Most of the time no isolated Network exists, except prior to
102// deserialization.
104public:
105 Network();
106 Network(NetworkType type, const std::string &name, int ni, int no);
107 virtual ~Network() = default;
108
109 // Accessors.
111 return type_;
112 }
113 bool IsTraining() const {
114 return training_ == TS_ENABLED;
115 }
116 bool needs_to_backprop() const {
117 return needs_to_backprop_;
118 }
119 int num_weights() const {
120 return num_weights_;
121 }
122 int NumInputs() const {
123 return ni_;
124 }
125 int NumOutputs() const {
126 return no_;
127 }
128 // Returns the required shape input to the network.
129 virtual StaticShape InputShape() const {
130 StaticShape result;
131 return result;
132 }
133 // Returns the shape output from the network given an input shape (which may
134 // be partially unknown ie zero).
135 virtual StaticShape OutputShape(const StaticShape &input_shape) const {
136 StaticShape result(input_shape);
137 result.set_depth(no_);
138 return result;
139 }
140 const std::string &name() const {
141 return name_;
142 }
143 virtual std::string spec() const {
144 return "?";
145 }
146 bool TestFlag(NetworkFlags flag) const {
147 return (network_flags_ & flag) != 0;
148 }
149
150 // Initialization and administrative functions that are mostly provided
151 // by Plumbing.
152 // Returns true if the given type is derived from Plumbing, and thus contains
153 // multiple sub-networks that can have their own learning rate.
154 virtual bool IsPlumbingType() const {
155 return false;
156 }
157
158 // Suspends/Enables/Permanently disables training by setting the training_
159 // flag. Serialize and DeSerialize only operate on the run-time data if state
160 // is TS_DISABLED or TS_TEMP_DISABLE. Specifying TS_TEMP_DISABLE will
161 // temporarily disable layers in state TS_ENABLED, allowing a trainer to
162 // serialize as if it were a recognizer.
163 // TS_RE_ENABLE will re-enable layers that were previously in any disabled
164 // state. If in TS_TEMP_DISABLE then the flag is just changed, but if in
165 // TS_DISABLED, the deltas in the weight matrices are reinitialized so that a
166 // recognizer can be converted back to a trainer.
167 virtual void SetEnableTraining(TrainingState state);
168
169 // Sets flags that control the action of the network. See NetworkFlags enum
170 // for bit values.
171 virtual void SetNetworkFlags(uint32_t flags);
172
173 // Sets up the network for training. Initializes weights using weights of
174 // scale `range` picked according to the random number generator `randomizer`.
175 // Note that randomizer is a borrowed pointer that should outlive the network
176 // and should not be deleted by any of the networks.
177 // Returns the number of weights initialized.
178 virtual int InitWeights(float range, TRand *randomizer);
179 // Changes the number of outputs to the outside world to the size of the given
180 // code_map. Recursively searches the entire network for Softmax layers that
181 // have exactly old_no outputs, and operates only on those, leaving all others
182 // unchanged. This enables networks with multiple output layers to get all
183 // their softmaxes updated, but if an internal layer, uses one of those
184 // softmaxes for input, then the inputs will effectively be scrambled.
185 // TODO(rays) Fix this before any such network is implemented.
186 // The softmaxes are resized by copying the old weight matrix entries for each
187 // output from code_map[output] where non-negative, and uses the mean (over
188 // all outputs) of the existing weights for all outputs with negative code_map
189 // entries. Returns the new number of weights.
190 virtual int RemapOutputs([[maybe_unused]] int old_no,
191 [[maybe_unused]] const std::vector<int> &code_map) {
192 return 0;
193 }
194
195 // Converts a float network to an int network.
196 virtual void ConvertToInt() {}
197
198 // Provides a pointer to a TRand for any networks that care to use it.
199 // Note that randomizer is a borrowed pointer that should outlive the network
200 // and should not be deleted by any of the networks.
201 virtual void SetRandomizer(TRand *randomizer);
202
203 // Sets needs_to_backprop_ to needs_backprop and returns true if
204 // needs_backprop || any weights in this network so the next layer forward
205 // can be told to produce backprop for this layer if needed.
206 virtual bool SetupNeedsBackprop(bool needs_backprop);
207
208 // Returns the most recent reduction factor that the network applied to the
209 // time sequence. Assumes that any 2-d is already eliminated. Used for
210 // scaling bounding boxes of truth data and calculating result bounding boxes.
211 // WARNING: if GlobalMinimax is used to vary the scale, this will return
212 // the last used scale factor. Call it before any forward, and it will return
213 // the minimum scale factor of the paths through the GlobalMinimax.
214 virtual int XScaleFactor() const {
215 return 1;
216 }
217
218 // Provides the (minimum) x scale factor to the network (of interest only to
219 // input units) so they can determine how to scale bounding boxes.
220 virtual void CacheXScaleFactor([[maybe_unused]] int factor) {}
221
222 // Provides debug output on the weights.
223 virtual void DebugWeights() = 0;
224
225 // Writes to the given file. Returns false in case of error.
226 // Should be overridden by subclasses, but called by their Serialize.
227 virtual bool Serialize(TFile *fp) const;
228 // Reads from the given file. Returns false in case of error.
229 // Should be overridden by subclasses, but NOT called by their DeSerialize.
230 virtual bool DeSerialize(TFile *fp) = 0;
231
232public:
233 // Updates the weights using the given learning rate, momentum and adam_beta.
234 // num_samples is used in the adam computation iff use_adam_ is true.
235 virtual void Update([[maybe_unused]] float learning_rate,
236 [[maybe_unused]] float momentum,
237 [[maybe_unused]] float adam_beta,
238 [[maybe_unused]] int num_samples) {}
239 // Sums the products of weight updates in *this and other, splitting into
240 // positive (same direction) in *same and negative (different direction) in
241 // *changed.
242 virtual void CountAlternators([[maybe_unused]] const Network &other,
243 [[maybe_unused]] TFloat *same,
244 [[maybe_unused]] TFloat *changed) const {}
245
246 // Reads from the given file. Returns nullptr in case of error.
247 // Determines the type of the serialized class and calls its DeSerialize
248 // on a new object of the appropriate type, which is returned.
249 static Network *CreateFromFile(TFile *fp);
250
251 // Runs forward propagation of activations on the input line.
252 // Note that input and output are both 2-d arrays.
253 // The 1st index is the time element. In a 1-d network, it might be the pixel
254 // position on the textline. In a 2-d network, the linearization is defined
255 // by the stride_map. (See networkio.h).
256 // The 2nd index of input is the network inputs/outputs, and the dimension
257 // of the input must match NumInputs() of this network.
258 // The output array will be resized as needed so that its 1st dimension is
259 // always equal to the number of output values, and its second dimension is
260 // always NumOutputs(). Note that all this detail is encapsulated away inside
261 // NetworkIO, as are the internals of the scratch memory space used by the
262 // network. See networkscratch.h for that.
263 // If input_transpose is not nullptr, then it contains the transpose of input,
264 // and the caller guarantees that it will still be valid on the next call to
265 // backward. The callee is therefore at liberty to save the pointer and
266 // reference it on a call to backward. This is a bit ugly, but it makes it
267 // possible for a replicating parallel to calculate the input transpose once
268 // instead of all the replicated networks having to do it.
269 virtual void Forward(bool debug, const NetworkIO &input,
270 const TransposedArray *input_transpose,
271 NetworkScratch *scratch, NetworkIO *output) = 0;
272
273 // Runs backward propagation of errors on fwdX_deltas.
274 // Note that fwd_deltas and back_deltas are both 2-d arrays as with Forward.
275 // Returns false if back_deltas was not set, due to there being no point in
276 // propagating further backwards. Thus most complete networks will always
277 // return false from Backward!
278 virtual bool Backward(bool debug, const NetworkIO &fwd_deltas,
279 NetworkScratch *scratch, NetworkIO *back_deltas) = 0;
280
281 // === Debug image display methods. ===
282 // Displays the image of the matrix to the forward window.
283 void DisplayForward(const NetworkIO &matrix);
284 // Displays the image of the matrix to the backward window.
285 void DisplayBackward(const NetworkIO &matrix);
286
287 // Creates the window if needed, otherwise clears it.
288 static void ClearWindow(bool tess_coords, const char *window_name, int width,
289 int height, ScrollView **window);
290
291 // Displays the pix in the given window. and returns the height of the pix.
292 // The pix is pixDestroyed.
293 static int DisplayImage(Image pix, ScrollView *window);
294
295protected:
296 // Returns a random number in [-range, range].
297 TFloat Random(TFloat range);
298
299protected:
300 NetworkType type_; // Type of the derived network class.
301 TrainingState training_; // Are we currently training?
302 bool needs_to_backprop_; // This network needs to output back_deltas.
303 int32_t network_flags_; // Behavior control flags in NetworkFlags.
304 int32_t ni_; // Number of input values.
305 int32_t no_; // Number of output values.
306 int32_t num_weights_; // Number of weights in this and sub-network.
307 std::string name_; // A unique name for this layer.
308
309 // NOT-serialized debug data.
310 ScrollView *forward_win_; // Recognition debug display window.
311 ScrollView *backward_win_; // Training debug display window.
312 TRand *randomizer_; // Random number generator.
313};
314
315} // namespace tesseract.
316
317#endif // TESSERACT_LSTM_NETWORK_H_
@ TBOX
bool Serialize(FILE *fp, const std::vector< T > &data)
Definition: helpers.h:236
TrainingState
Definition: network.h:90
@ TS_TEMP_DISABLE
Definition: network.h:95
@ TS_ENABLED
Definition: network.h:93
@ TS_DISABLED
Definition: network.h:92
@ TS_RE_ENABLE
Definition: network.h:97
NetworkType
Definition: network.h:41
@ NT_LINEAR
Definition: network.h:65
@ NT_MAXPOOL
Definition: network.h:46
@ NT_RELU
Definition: network.h:64
@ NT_XREVERSED
Definition: network.h:54
@ NT_LSTM
Definition: network.h:58
@ NT_CONVOLVE
Definition: network.h:45
@ NT_SOFTMAX
Definition: network.h:66
@ NT_NONE
Definition: network.h:42
@ NT_LOGISTIC
Definition: network.h:60
@ NT_PAR_UD_LSTM
Definition: network.h:50
@ NT_LSTM_SOFTMAX_ENCODED
Definition: network.h:74
@ NT_PARALLEL
Definition: network.h:47
@ NT_SYMCLIP
Definition: network.h:62
@ NT_PAR_2D_LSTM
Definition: network.h:51
@ NT_LSTM_SUMMARY
Definition: network.h:59
@ NT_YREVERSED
Definition: network.h:55
@ NT_RECONFIG
Definition: network.h:53
@ NT_INPUT
Definition: network.h:43
@ NT_TENSORFLOW
Definition: network.h:76
@ NT_POSCLIP
Definition: network.h:61
@ NT_LSTM_SOFTMAX
Definition: network.h:73
@ NT_XYTRANSPOSE
Definition: network.h:56
@ NT_SERIES
Definition: network.h:52
@ NT_SOFTMAX_NO_CTC
Definition: network.h:67
@ NT_TANH
Definition: network.h:63
@ NT_PAR_RL_LSTM
Definition: network.h:49
@ NT_COUNT
Definition: network.h:78
@ NT_REPLICATED
Definition: network.h:48
double TFloat
Definition: tesstypes.h:39
NetworkFlags
Definition: network.h:83
@ NF_LAYER_SPECIFIC_LR
Definition: network.h:85
@ NF_ADAM
Definition: network.h:86
type
Definition: upload.py:458
int32_t network_flags_
Definition: network.h:303
NetworkType type_
Definition: network.h:300
virtual int RemapOutputs(int old_no, const std::vector< int > &code_map)
Definition: network.h:190
virtual int XScaleFactor() const
Definition: network.h:214
const std::string & name() const
Definition: network.h:140
int NumOutputs() const
Definition: network.h:125
virtual void Forward(bool debug, const NetworkIO &input, const TransposedArray *input_transpose, NetworkScratch *scratch, NetworkIO *output)=0
bool needs_to_backprop_
Definition: network.h:302
int num_weights() const
Definition: network.h:119
std::string name_
Definition: network.h:307
virtual bool DeSerialize(TFile *fp)=0
virtual bool IsPlumbingType() const
Definition: network.h:154
virtual bool Backward(bool debug, const NetworkIO &fwd_deltas, NetworkScratch *scratch, NetworkIO *back_deltas)=0
bool needs_to_backprop() const
Definition: network.h:116
ScrollView * forward_win_
Definition: network.h:310
bool IsTraining() const
Definition: network.h:113
virtual void Update(float learning_rate, float momentum, float adam_beta, int num_samples)
Definition: network.h:235
virtual void CacheXScaleFactor(int factor)
Definition: network.h:220
ScrollView * backward_win_
Definition: network.h:311
virtual void DebugWeights()=0
virtual StaticShape OutputShape(const StaticShape &input_shape) const
Definition: network.h:135
bool TestFlag(NetworkFlags flag) const
Definition: network.h:146
virtual std::string spec() const
Definition: network.h:143
int NumInputs() const
Definition: network.h:122
int32_t num_weights_
Definition: network.h:306
TrainingState training_
Definition: network.h:301
virtual ~Network()=default
virtual void CountAlternators(const Network &other, TFloat *same, TFloat *changed) const
Definition: network.h:242
NetworkType type() const
Definition: network.h:110
TRand * randomizer_
Definition: network.h:312
virtual void ConvertToInt()
Definition: network.h:196
virtual StaticShape InputShape() const
Definition: network.h:129
void set_depth(int value)
Definition: static_shape.h:62
#define TESS_API
Definition: export.h:32