tesseract v5.3.3.20231005
trie.cpp
Go to the documentation of this file.
1/******************************************************************************
2 *
3 * File: trie.cpp (Formerly trie.c)
4 * Description: Functions to build a trie data structure.
5 * Author: Mark Seaman, OCR Technology
6 *
7 * (c) Copyright 1987, Hewlett-Packard Company.
8 ** Licensed under the Apache License, Version 2.0 (the "License");
9 ** you may not use this file except in compliance with the License.
10 ** You may obtain a copy of the License at
11 ** http://www.apache.org/licenses/LICENSE-2.0
12 ** Unless required by applicable law or agreed to in writing, software
13 ** distributed under the License is distributed on an "AS IS" BASIS,
14 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 ** See the License for the specific language governing permissions and
16 ** limitations under the License.
17 *
18 *****************************************************************************/
19/*----------------------------------------------------------------------
20 I n c l u d e s
21----------------------------------------------------------------------*/
22
23#include "trie.h"
24
25#include "dawg.h"
26#include "dict.h"
27#include "helpers.h"
28#include "kdpair.h"
29
30namespace tesseract {
31
32const char kDoNotReverse[] = "RRP_DO_NO_REVERSE";
33const char kReverseIfHasRTL[] = "RRP_REVERSE_IF_HAS_RTL";
34const char kForceReverse[] = "RRP_FORCE_REVERSE";
35
37
38const char Trie::kAlphaPatternUnicode[] = "\u2000";
39const char Trie::kDigitPatternUnicode[] = "\u2001";
40const char Trie::kAlphanumPatternUnicode[] = "\u2002";
41const char Trie::kPuncPatternUnicode[] = "\u2003";
42const char Trie::kLowerPatternUnicode[] = "\u2004";
43const char Trie::kUpperPatternUnicode[] = "\u2005";
44
46 return RTLReversePolicyNames[reverse_policy];
47}
48
49// Reset the Trie to empty.
51 for (auto node : nodes_) {
52 delete node;
53 }
54 nodes_.clear();
55 root_back_freelist_.clear();
56 num_edges_ = 0;
57 new_dawg_node(); // Need to allocate node 0.
58}
59
60bool Trie::edge_char_of(NODE_REF node_ref, NODE_REF next_node, int direction, bool word_end,
61 UNICHAR_ID unichar_id, EDGE_RECORD **edge_ptr,
62 EDGE_INDEX *edge_index) const {
63 if (debug_level_ == 3) {
64 tprintf("edge_char_of() given node_ref " REFFORMAT " next_node " REFFORMAT
65 " direction %d word_end %d unichar_id %d, exploring node:\n",
66 node_ref, next_node, direction, word_end, unichar_id);
67 if (node_ref != NO_EDGE) {
68 print_node(node_ref, nodes_[node_ref]->forward_edges.size());
69 }
70 }
71 if (node_ref == NO_EDGE) {
72 return false;
73 }
74 assert(static_cast<size_t>(node_ref) < nodes_.size());
75 EDGE_VECTOR &vec = (direction == FORWARD_EDGE) ? nodes_[node_ref]->forward_edges
76 : nodes_[node_ref]->backward_edges;
77 int vec_size = vec.size();
78 if (node_ref == 0 && direction == FORWARD_EDGE) { // binary search
79 EDGE_INDEX start = 0;
80 EDGE_INDEX end = vec_size - 1;
81 EDGE_INDEX k;
82 int compare;
83 while (start <= end) {
84 k = (start + end) >> 1; // (start + end) / 2
85 compare = given_greater_than_edge_rec(next_node, word_end, unichar_id, vec[k]);
86 if (compare == 0) { // given == vec[k]
87 *edge_ptr = &(vec[k]);
88 *edge_index = k;
89 return true;
90 } else if (compare == 1) { // given > vec[k]
91 start = k + 1;
92 } else { // given < vec[k]
93 end = k - 1;
94 }
95 }
96 } else { // linear search
97 for (int i = 0; i < vec_size; ++i) {
98 EDGE_RECORD &edge_rec = vec[i];
99 if (edge_rec_match(next_node, word_end, unichar_id, next_node_from_edge_rec(edge_rec),
101 *edge_ptr = &(edge_rec);
102 *edge_index = i;
103 return true;
104 }
105 }
106 }
107 return false; // not found
108}
109
110bool Trie::add_edge_linkage(NODE_REF node1, NODE_REF node2, bool marker_flag, int direction,
111 bool word_end, UNICHAR_ID unichar_id) {
112 EDGE_VECTOR *vec = (direction == FORWARD_EDGE) ? &(nodes_[node1]->forward_edges)
113 : &(nodes_[node1]->backward_edges);
114 unsigned search_index;
115 if (node1 == 0 && direction == FORWARD_EDGE) {
116 search_index = 0; // find the index to make the add sorted
117 while (search_index < vec->size() &&
118 given_greater_than_edge_rec(node2, word_end, unichar_id, (*vec)[search_index]) == 1) {
119 search_index++;
120 }
121 } else {
122 search_index = vec->size(); // add is unsorted, so index does not matter
123 }
124 EDGE_RECORD edge_rec;
125 link_edge(&edge_rec, node2, marker_flag, direction, word_end, unichar_id);
126 if (node1 == 0 && direction == BACKWARD_EDGE && !root_back_freelist_.empty()) {
127 EDGE_INDEX edge_index = root_back_freelist_.back();
128 root_back_freelist_.pop_back();
129 (*vec)[edge_index] = edge_rec;
130 } else if (search_index < vec->size()) {
131 vec->insert(vec->begin() + search_index, edge_rec);
132 } else {
133 vec->push_back(edge_rec);
134 }
135 if (debug_level_ > 1) {
136 tprintf("new edge in nodes_[" REFFORMAT "]: ", node1);
137 print_edge_rec(edge_rec);
138 tprintf("\n");
139 }
140 num_edges_++;
141 return true;
142}
143
144void Trie::add_word_ending(EDGE_RECORD *edge_ptr, NODE_REF the_next_node, bool marker_flag,
145 UNICHAR_ID unichar_id) {
146 EDGE_RECORD *back_edge_ptr;
147 EDGE_INDEX back_edge_index;
148 ASSERT_HOST(edge_char_of(the_next_node, NO_EDGE, BACKWARD_EDGE, false, unichar_id, &back_edge_ptr,
149 &back_edge_index));
150 if (marker_flag) {
151 *back_edge_ptr |= (MARKER_FLAG << flag_start_bit_);
152 *edge_ptr |= (MARKER_FLAG << flag_start_bit_);
153 }
154 // Mark both directions as end of word.
155 *back_edge_ptr |= (WERD_END_FLAG << flag_start_bit_);
156 *edge_ptr |= (WERD_END_FLAG << flag_start_bit_);
157}
158
159bool Trie::add_word_to_dawg(const WERD_CHOICE &word, const std::vector<bool> *repetitions) {
160 if (word.length() <= 0) {
161 return false; // can't add empty words
162 }
163 if (repetitions != nullptr) {
164 ASSERT_HOST(repetitions->size() == word.length());
165 }
166 // Make sure the word does not contain invalid unchar ids.
167 for (unsigned i = 0; i < word.length(); ++i) {
168 if (word.unichar_id(i) < 0 || word.unichar_id(i) >= unicharset_size_) {
169 return false;
170 }
171 }
172
173 EDGE_RECORD *edge_ptr;
174 NODE_REF last_node = 0;
175 NODE_REF the_next_node;
176 bool marker_flag = false;
177 EDGE_INDEX edge_index;
178 int32_t still_finding_chars = true;
179 int32_t word_end = false;
180 bool add_failed = false;
181 bool found;
182
183 if (debug_level_ > 1) {
184 word.print("\nAdding word: ");
185 }
186
187 UNICHAR_ID unichar_id;
188 unsigned i;
189 for (i = 0; i < word.length() - 1; ++i) {
190 unichar_id = word.unichar_id(i);
191 marker_flag = (repetitions != nullptr) ? (*repetitions)[i] : false;
192 if (debug_level_ > 1) {
193 tprintf("Adding letter %d\n", unichar_id);
194 }
195 if (still_finding_chars) {
196 found = edge_char_of(last_node, NO_EDGE, FORWARD_EDGE, word_end, unichar_id, &edge_ptr,
197 &edge_index);
198 if (found && debug_level_ > 1) {
199 tprintf("exploring edge " REFFORMAT " in node " REFFORMAT "\n", edge_index, last_node);
200 }
201 if (!found) {
202 still_finding_chars = false;
203 } else if (next_node_from_edge_rec(*edge_ptr) == 0) {
204 // We hit the end of an existing word, but the new word is longer.
205 // In this case we have to disconnect the existing word from the
206 // backwards root node, mark the current position as end-of-word
207 // and add new nodes for the increased length. Disconnecting the
208 // existing word from the backwards root node requires a linear
209 // search, so it is much faster to add the longest words first,
210 // to avoid having to come here.
211 word_end = true;
212 still_finding_chars = false;
213 remove_edge(last_node, 0, word_end, unichar_id);
214 } else {
215 // We have to add a new branch here for the new word.
216 if (marker_flag) {
218 }
219 last_node = next_node_from_edge_rec(*edge_ptr);
220 }
221 }
222 if (!still_finding_chars) {
223 the_next_node = new_dawg_node();
224 if (debug_level_ > 1) {
225 tprintf("adding node " REFFORMAT "\n", the_next_node);
226 }
227 if (the_next_node == 0) {
228 add_failed = true;
229 break;
230 }
231 if (!add_new_edge(last_node, the_next_node, marker_flag, word_end, unichar_id)) {
232 add_failed = true;
233 break;
234 }
235 word_end = false;
236 last_node = the_next_node;
237 }
238 }
239 the_next_node = 0;
240 unichar_id = word.unichar_id(i);
241 marker_flag = (repetitions != nullptr) ? (*repetitions)[i] : false;
242 if (debug_level_ > 1) {
243 tprintf("Adding letter %d\n", unichar_id);
244 }
245 if (still_finding_chars &&
246 edge_char_of(last_node, NO_EDGE, FORWARD_EDGE, false, unichar_id, &edge_ptr, &edge_index)) {
247 // An extension of this word already exists in the trie, so we
248 // only have to add the ending flags in both directions.
249 add_word_ending(edge_ptr, next_node_from_edge_rec(*edge_ptr), marker_flag, unichar_id);
250 } else {
251 // Add a link to node 0. All leaves connect to node 0 so the back links can
252 // be used in reduction to a dawg. This root backward node has one edge
253 // entry for every word, (except prefixes of longer words) so it is huge.
254 if (!add_failed && !add_new_edge(last_node, the_next_node, marker_flag, true, unichar_id)) {
255 add_failed = true;
256 }
257 }
258 if (add_failed) {
259 tprintf("Re-initializing document dictionary...\n");
260 clear();
261 return false;
262 } else {
263 return true;
264 }
265}
266
268 auto *node = new TRIE_NODE_RECORD();
269 nodes_.push_back(node);
270 return nodes_.size() - 1;
271}
272
273bool Trie::read_and_add_word_list(const char *filename, const UNICHARSET &unicharset,
274 Trie::RTLReversePolicy reverse_policy) {
275 std::vector<std::string> word_list;
276 if (!read_word_list(filename, &word_list)) {
277 return false;
278 }
279 std::sort(word_list.begin(), word_list.end(),
280 [](auto &s1, auto &s2) { return s1.size() > s2.size(); });
281 return add_word_list(word_list, unicharset, reverse_policy);
282}
283
284bool Trie::read_word_list(const char *filename, std::vector<std::string> *words) {
285 FILE *word_file;
286 char line_str[CHARS_PER_LINE];
287 int word_count = 0;
288
289 word_file = fopen(filename, "rb");
290 if (word_file == nullptr) {
291 return false;
292 }
293
294 while (fgets(line_str, sizeof(line_str), word_file) != nullptr) {
295 chomp_string(line_str); // remove newline
296 std::string word_str(line_str);
297 ++word_count;
298 if (debug_level_ && word_count % 10000 == 0) {
299 tprintf("Read %d words so far\n", word_count);
300 }
301 words->push_back(word_str);
302 }
303 if (debug_level_) {
304 tprintf("Read %d words total.\n", word_count);
305 }
306 fclose(word_file);
307 return true;
308}
309
310bool Trie::add_word_list(const std::vector<std::string> &words, const UNICHARSET &unicharset,
311 Trie::RTLReversePolicy reverse_policy) {
312 for (const auto &i : words) {
313 WERD_CHOICE word(i.c_str(), unicharset);
314 if (word.empty() || word.contains_unichar_id(INVALID_UNICHAR_ID)) {
315 continue;
316 }
317 if ((reverse_policy == RRP_REVERSE_IF_HAS_RTL && word.has_rtl_unichar_id()) ||
318 reverse_policy == RRP_FORCE_REVERSE) {
320 }
321 if (!word_in_dawg(word)) {
322 add_word_to_dawg(word);
323 if (!word_in_dawg(word)) {
324 tprintf("Error: word '%s' not in DAWG after adding it\n", i.c_str());
325 return false;
326 }
327 }
328 }
329 return true;
330}
331
346 unicharset_size_ = unicharset->size();
347}
348
349void Trie::unichar_id_to_patterns(UNICHAR_ID unichar_id, const UNICHARSET &unicharset,
350 std::vector<UNICHAR_ID> *vec) const {
351 bool is_alpha = unicharset.get_isalpha(unichar_id);
352 if (is_alpha) {
353 vec->push_back(alpha_pattern_);
354 vec->push_back(alphanum_pattern_);
355 if (unicharset.get_islower(unichar_id)) {
356 vec->push_back(lower_pattern_);
357 } else if (unicharset.get_isupper(unichar_id)) {
358 vec->push_back(upper_pattern_);
359 }
360 }
361 if (unicharset.get_isdigit(unichar_id)) {
362 vec->push_back(digit_pattern_);
363 if (!is_alpha) {
364 vec->push_back(alphanum_pattern_);
365 }
366 }
367 if (unicharset.get_ispunctuation(unichar_id)) {
368 vec->push_back(punc_pattern_);
369 }
370}
371
373 if (ch == 'c') {
374 return alpha_pattern_;
375 } else if (ch == 'd') {
376 return digit_pattern_;
377 } else if (ch == 'n') {
378 return alphanum_pattern_;
379 } else if (ch == 'p') {
380 return punc_pattern_;
381 } else if (ch == 'a') {
382 return lower_pattern_;
383 } else if (ch == 'A') {
384 return upper_pattern_;
385 } else {
386 return INVALID_UNICHAR_ID;
387 }
388}
389
390bool Trie::read_pattern_list(const char *filename, const UNICHARSET &unicharset) {
392 tprintf("please call initialize_patterns() before read_pattern_list()\n");
393 return false;
394 }
395
396 FILE *pattern_file = fopen(filename, "rb");
397 if (pattern_file == nullptr) {
398 tprintf("Error opening pattern file %s\n", filename);
399 return false;
400 }
401
402 int pattern_count = 0;
403 char string[CHARS_PER_LINE];
404 while (fgets(string, CHARS_PER_LINE, pattern_file) != nullptr) {
405 chomp_string(string); // remove newline
406 // Parse the pattern and construct a unichar id vector.
407 // Record the number of repetitions of each unichar in the parallel vector.
408 WERD_CHOICE word(&unicharset);
409 std::vector<bool> repetitions_vec;
410 const char *str_ptr = string;
411 int step = unicharset.step(str_ptr);
412 bool failed = false;
413 while (step > 0) {
414 UNICHAR_ID curr_unichar_id = INVALID_UNICHAR_ID;
415 if (step == 1 && *str_ptr == '\\') {
416 ++str_ptr;
417 if (*str_ptr == '\\') { // regular '\' unichar that was escaped
418 curr_unichar_id = unicharset.unichar_to_id(str_ptr, step);
419 } else {
420#if 0 // TODO: This code should be enabled if kSaneNumConcreteChars != 0.
421 if (word.length() < kSaneNumConcreteChars) {
422 tprintf(
423 "Please provide at least %d concrete characters at the"
424 " beginning of the pattern\n",
426 failed = true;
427 break;
428 }
429#endif
430 // Parse character class from expression.
431 curr_unichar_id = character_class_to_pattern(*str_ptr);
432 }
433 } else {
434 curr_unichar_id = unicharset.unichar_to_id(str_ptr, step);
435 }
436 if (curr_unichar_id == INVALID_UNICHAR_ID) {
437 failed = true;
438 break; // failed to parse this pattern
439 }
440 word.append_unichar_id(curr_unichar_id, 1, 0.0, 0.0);
441 repetitions_vec.push_back(false);
442 str_ptr += step;
443 step = unicharset.step(str_ptr);
444 // Check if there is a repetition pattern specified after this unichar.
445 if (step == 1 && *str_ptr == '\\' && *(str_ptr + 1) == '*') {
446 repetitions_vec[repetitions_vec.size() - 1] = true;
447 str_ptr += 2;
448 step = unicharset.step(str_ptr);
449 }
450 }
451 if (failed) {
452 tprintf("Invalid user pattern %s\n", string);
453 continue;
454 }
455 // Insert the pattern into the trie.
456 if (debug_level_ > 2) {
457 tprintf("Inserting expanded user pattern %s\n", word.debug_string().c_str());
458 }
459 if (!this->word_in_dawg(word)) {
460 this->add_word_to_dawg(word, &repetitions_vec);
461 if (!this->word_in_dawg(word)) {
462 tprintf("Error: failed to insert pattern '%s'\n", string);
463 }
464 }
465 ++pattern_count;
466 }
467 if (debug_level_) {
468 tprintf("Read %d valid patterns from %s\n", pattern_count, filename);
469 }
470 fclose(pattern_file);
471 return true;
472}
473
474void Trie::remove_edge_linkage(NODE_REF node1, NODE_REF node2, int direction, bool word_end,
475 UNICHAR_ID unichar_id) {
476 EDGE_RECORD *edge_ptr = nullptr;
477 EDGE_INDEX edge_index = 0;
478 ASSERT_HOST(edge_char_of(node1, node2, direction, word_end, unichar_id, &edge_ptr, &edge_index));
479 if (debug_level_ > 1) {
480 tprintf("removed edge in nodes_[" REFFORMAT "]: ", node1);
481 print_edge_rec(*edge_ptr);
482 tprintf("\n");
483 }
484 if (direction == FORWARD_EDGE) {
485 nodes_[node1]->forward_edges.erase(nodes_[node1]->forward_edges.begin() + edge_index);
486 } else if (node1 == 0) {
487 KillEdge(&nodes_[node1]->backward_edges[edge_index]);
488 root_back_freelist_.push_back(edge_index);
489 } else {
490 nodes_[node1]->backward_edges.erase(nodes_[node1]->backward_edges.begin() + edge_index);
491 }
492 --num_edges_;
493}
494
495// Some optimizations employed in add_word_to_dawg and trie_to_dawg:
496// 1 Avoid insertion sorting or bubble sorting the tail root node
497// (back links on node 0, a list of all the leaves.). The node is
498// huge, and sorting it with n^2 time is terrible.
499// 2 Avoid using vector::erase on the tail root node.
500// (a) During add of words to the trie, zero-out the unichars and
501// keep a freelist of spaces to re-use.
502// (b) During reduction, just zero-out the unichars of deleted back
503// links, skipping zero entries while searching.
504// 3 Avoid linear search of the tail root node. This has to be done when
505// a suffix is added to an existing word. Adding words by decreasing
506// length avoids this problem entirely. Words can still be added in
507// any order, but it is faster to add the longest first.
509 root_back_freelist_.clear(); // Will be invalided by trie_to_dawg.
510 if (debug_level_ > 2) {
511 print_all("Before reduction:", MAX_NODE_EDGES_DISPLAY);
512 }
513 std::vector<bool> reduced_nodes(nodes_.size());
514 this->reduce_node_input(0, reduced_nodes);
515
516 if (debug_level_ > 2) {
517 print_all("After reduction:", MAX_NODE_EDGES_DISPLAY);
518 }
519 // Build a translation map from node indices in nodes_ vector to
520 // their target indices in EDGE_ARRAY.
521 std::vector<NODE_REF> node_ref_map(nodes_.size() + 1);
522 unsigned i;
523 for (i = 0; i < nodes_.size(); ++i) {
524 node_ref_map[i + 1] = node_ref_map[i] + nodes_[i]->forward_edges.size();
525 }
526 int num_forward_edges = node_ref_map[i];
527
528 // Convert nodes_ vector into EDGE_ARRAY translating the next node references
529 // in edges using node_ref_map. Empty nodes and backward edges are dropped.
530 auto edge_array = new EDGE_RECORD[num_forward_edges];
531 EDGE_ARRAY edge_array_ptr = edge_array;
532 for (i = 0; i < nodes_.size(); ++i) {
533 TRIE_NODE_RECORD *node_ptr = nodes_[i];
534 int end = node_ptr->forward_edges.size();
535 for (int j = 0; j < end; ++j) {
536 EDGE_RECORD &edge_rec = node_ptr->forward_edges[j];
537 NODE_REF node_ref = next_node_from_edge_rec(edge_rec);
538 ASSERT_HOST(static_cast<size_t>(node_ref) < nodes_.size());
539 UNICHAR_ID unichar_id = unichar_id_from_edge_rec(edge_rec);
540 link_edge(edge_array_ptr, node_ref_map[node_ref], false, FORWARD_EDGE,
541 end_of_word_from_edge_rec(edge_rec), unichar_id);
542 if (j == end - 1) {
543 set_marker_flag_in_edge_rec(edge_array_ptr);
544 }
545 ++edge_array_ptr;
546 }
547 }
548
549 return new SquishedDawg(edge_array, num_forward_edges, type_, lang_, perm_, unicharset_size_,
551}
552
554 const EDGE_RECORD &edge2) {
555 if (debug_level_ > 1) {
556 tprintf("\nCollapsing node %" PRIi64 ":\n", node);
558 tprintf("Candidate edges: ");
559 print_edge_rec(edge1);
560 tprintf(", ");
561 print_edge_rec(edge2);
562 tprintf("\n\n");
563 }
564 NODE_REF next_node1 = next_node_from_edge_rec(edge1);
565 NODE_REF next_node2 = next_node_from_edge_rec(edge2);
566 TRIE_NODE_RECORD *next_node2_ptr = nodes_[next_node2];
567 // Translate all edges going to/from next_node2 to go to/from next_node1.
568 EDGE_RECORD *edge_ptr = nullptr;
569 EDGE_INDEX edge_index;
570 // The backward link in node to next_node2 will be zeroed out by the caller.
571 // Copy all the backward links in next_node2 to node next_node1
572 for (unsigned i = 0; i < next_node2_ptr->backward_edges.size(); ++i) {
573 const EDGE_RECORD &bkw_edge = next_node2_ptr->backward_edges[i];
574 NODE_REF curr_next_node = next_node_from_edge_rec(bkw_edge);
575 UNICHAR_ID curr_unichar_id = unichar_id_from_edge_rec(bkw_edge);
576 int curr_word_end = end_of_word_from_edge_rec(bkw_edge);
577 bool marker_flag = marker_flag_from_edge_rec(bkw_edge);
578 add_edge_linkage(next_node1, curr_next_node, marker_flag, BACKWARD_EDGE, curr_word_end,
579 curr_unichar_id);
580 // Relocate the corresponding forward edge in curr_next_node
581 ASSERT_HOST(edge_char_of(curr_next_node, next_node2, FORWARD_EDGE, curr_word_end,
582 curr_unichar_id, &edge_ptr, &edge_index));
583 set_next_node_in_edge_rec(edge_ptr, next_node1);
584 }
585 int next_node2_num_edges =
586 (next_node2_ptr->forward_edges.size() + next_node2_ptr->backward_edges.size());
587 if (debug_level_ > 1) {
588 tprintf("removed %d edges from node " REFFORMAT "\n", next_node2_num_edges, next_node2);
589 }
590 next_node2_ptr->forward_edges.clear();
591 next_node2_ptr->backward_edges.clear();
592 num_edges_ -= next_node2_num_edges;
593 return true;
594}
595
597 EDGE_VECTOR *backward_edges, std::vector<bool> &reduced_nodes) {
598 if (debug_level_ > 1) {
599 tprintf("reduce_lettered_edges(edge=" REFFORMAT ")\n", edge_index);
600 }
601 // Compare each of the edge pairs with the given unichar_id.
602 bool did_something = false;
603 for (unsigned i = edge_index; i < backward_edges->size() - 1; ++i) {
604 // Find the first edge that can be eliminated.
605 UNICHAR_ID curr_unichar_id = INVALID_UNICHAR_ID;
606 while (i < backward_edges->size()) {
607 if (!DeadEdge((*backward_edges)[i])) {
608 curr_unichar_id = unichar_id_from_edge_rec((*backward_edges)[i]);
609 if (curr_unichar_id != unichar_id) {
610 return did_something;
611 }
612 if (can_be_eliminated((*backward_edges)[i])) {
613 break;
614 }
615 }
616 ++i;
617 }
618 if (i == backward_edges->size()) {
619 break;
620 }
621 const EDGE_RECORD &edge_rec = (*backward_edges)[i];
622 // Compare it to the rest of the edges with the given unichar_id.
623 for (auto j = i + 1; j < backward_edges->size(); ++j) {
624 const EDGE_RECORD &next_edge_rec = (*backward_edges)[j];
625 if (DeadEdge(next_edge_rec)) {
626 continue;
627 }
628 UNICHAR_ID next_id = unichar_id_from_edge_rec(next_edge_rec);
629 if (next_id != unichar_id) {
630 break;
631 }
632 if (end_of_word_from_edge_rec(next_edge_rec) == end_of_word_from_edge_rec(edge_rec) &&
633 can_be_eliminated(next_edge_rec) &&
634 eliminate_redundant_edges(node, edge_rec, next_edge_rec)) {
635 reduced_nodes[next_node_from_edge_rec(edge_rec)] = false;
636 did_something = true;
637 KillEdge(&(*backward_edges)[j]);
638 }
639 }
640 }
641 return did_something;
642}
643
645 int num_edges = edges->size();
646 if (num_edges <= 1) {
647 return;
648 }
649 std::vector<KDPairInc<UNICHAR_ID, EDGE_RECORD>> sort_vec;
650 sort_vec.reserve(num_edges);
651 for (int i = 0; i < num_edges; ++i) {
652 sort_vec.emplace_back(unichar_id_from_edge_rec((*edges)[i]), (*edges)[i]);
653 }
654 std::sort(sort_vec.begin(), sort_vec.end());
655 for (int i = 0; i < num_edges; ++i) {
656 (*edges)[i] = sort_vec[i].data();
657 }
658}
659
660void Trie::reduce_node_input(NODE_REF node, std::vector<bool> &reduced_nodes) {
661 EDGE_VECTOR &backward_edges = nodes_[node]->backward_edges;
662 sort_edges(&backward_edges);
663 if (debug_level_ > 1) {
664 tprintf("reduce_node_input(node=" REFFORMAT ")\n", node);
666 }
667
668 EDGE_INDEX edge_index = 0;
669 while (static_cast<size_t>(edge_index) < backward_edges.size()) {
670 if (DeadEdge(backward_edges[edge_index])) {
671 continue;
672 }
673 UNICHAR_ID unichar_id = unichar_id_from_edge_rec(backward_edges[edge_index]);
674 while (reduce_lettered_edges(edge_index, unichar_id, node, &backward_edges, reduced_nodes)) {
675 ;
676 }
677 while (static_cast<size_t>(++edge_index) < backward_edges.size()) {
678 UNICHAR_ID id = unichar_id_from_edge_rec(backward_edges[edge_index]);
679 if (!DeadEdge(backward_edges[edge_index]) && id != unichar_id) {
680 break;
681 }
682 }
683 }
684 reduced_nodes[node] = true; // mark as reduced
685
686 if (debug_level_ > 1) {
687 tprintf("Node " REFFORMAT " after reduction:\n", node);
689 }
690
691 for (auto &backward_edge : backward_edges) {
692 if (DeadEdge(backward_edge)) {
693 continue;
694 }
696 if (next_node != 0 && !reduced_nodes[next_node]) {
697 reduce_node_input(next_node, reduced_nodes);
698 }
699 }
700}
701
702void Trie::print_node(NODE_REF node, int max_num_edges) const {
703 if (node == NO_EDGE) {
704 return; // nothing to print
705 }
706 TRIE_NODE_RECORD *node_ptr = nodes_[node];
707 int num_fwd = node_ptr->forward_edges.size();
708 int num_bkw = node_ptr->backward_edges.size();
709 EDGE_VECTOR *vec;
710 for (int dir = 0; dir < 2; ++dir) {
711 if (dir == 0) {
712 vec = &(node_ptr->forward_edges);
713 tprintf(REFFORMAT " (%d %d): ", node, num_fwd, num_bkw);
714 } else {
715 vec = &(node_ptr->backward_edges);
716 tprintf("\t");
717 }
718 int i;
719 for (i = 0; (dir == 0 ? i < num_fwd : i < num_bkw) && i < max_num_edges; ++i) {
720 if (DeadEdge((*vec)[i])) {
721 continue;
722 }
723 print_edge_rec((*vec)[i]);
724 tprintf(" ");
725 }
726 if (dir == 0 ? i < num_fwd : i < num_bkw) {
727 tprintf("...");
728 }
729 tprintf("\n");
730 }
731}
732
733} // namespace tesseract
#define ASSERT_HOST(x)
Definition: errcode.h:54
#define WERD_END_FLAG
Definition: dawg.h:82
#define BACKWARD_EDGE
Definition: dawg.h:78
#define FORWARD_EDGE
Definition: dawg.h:77
#define MAX_NODE_EDGES_DISPLAY
Definition: dawg.h:79
#define MARKER_FLAG
Definition: dawg.h:80
#define REFFORMAT
Definition: dawg.h:85
#define CHARS_PER_LINE
Definition: dict.h:44
const char kDoNotReverse[]
Definition: trie.cpp:32
uint64_t EDGE_RECORD
Definition: dawg.h:47
std::vector< EDGE_RECORD > EDGE_VECTOR
Definition: trie.h:39
const char kReverseIfHasRTL[]
Definition: trie.cpp:33
void tprintf(const char *format,...)
Definition: tprintf.cpp:41
int64_t NODE_REF
Definition: dawg.h:50
void chomp_string(char *str)
Definition: helpers.h:91
const char kForceReverse[]
Definition: trie.cpp:34
int64_t EDGE_INDEX
Definition: trie.h:38
int UNICHAR_ID
Definition: unichar.h:34
EDGE_RECORD * EDGE_ARRAY
Definition: dawg.h:48
const char *const RTLReversePolicyNames[]
Definition: trie.cpp:36
bool has_rtl_unichar_id() const
Definition: ratngs.cpp:411
std::string debug_string() const
Definition: ratngs.h:479
bool contains_unichar_id(UNICHAR_ID unichar_id) const
Definition: ratngs.cpp:309
UNICHAR_ID unichar_id(unsigned index) const
Definition: ratngs.h:299
bool empty() const
Definition: ratngs.h:284
void reverse_and_mirror_unichar_ids()
Definition: ratngs.cpp:349
unsigned length() const
Definition: ratngs.h:287
void print() const
Definition: ratngs.h:561
void append_unichar_id(UNICHAR_ID unichar_id, int blob_count, float rating, float certainty)
Definition: ratngs.cpp:447
void unichar_insert(const char *const unichar_repr, OldUncleanUnichars old_style)
Definition: unicharset.cpp:654
bool get_isalpha(UNICHAR_ID unichar_id) const
Definition: unicharset.h:497
bool get_islower(UNICHAR_ID unichar_id) const
Definition: unicharset.h:506
int step(const char *str) const
Definition: unicharset.cpp:211
bool get_isupper(UNICHAR_ID unichar_id) const
Definition: unicharset.h:515
bool get_isdigit(UNICHAR_ID unichar_id) const
Definition: unicharset.h:524
UNICHAR_ID unichar_to_id(const char *const unichar_repr) const
Definition: unicharset.cpp:186
bool get_ispunctuation(UNICHAR_ID unichar_id) const
Definition: unicharset.h:533
size_t size() const
Definition: unicharset.h:355
bool edge_rec_match(NODE_REF next_node, bool word_end, UNICHAR_ID unichar_id, NODE_REF other_next_node, bool other_word_end, UNICHAR_ID other_unichar_id) const
Definition: dawg.h:275
NODE_REF next_node_from_edge_rec(const EDGE_RECORD &edge_rec) const
Returns the next node visited by following this edge.
Definition: dawg.h:210
int flag_start_bit_
Definition: dawg.h:314
int given_greater_than_edge_rec(NODE_REF next_node, bool word_end, UNICHAR_ID unichar_id, const EDGE_RECORD &edge_rec) const
Definition: dawg.h:247
bool word_in_dawg(const WERD_CHOICE &word) const
Returns true if the given word is in the Dawg.
Definition: dawg.cpp:64
void set_next_node_in_edge_rec(EDGE_RECORD *edge_rec, EDGE_REF value)
Sets the next node link for this edge in the Dawg.
Definition: dawg.h:232
std::string lang_
Definition: dawg.h:302
DawgType type_
Definition: dawg.h:303
int unicharset_size_
Definition: dawg.h:313
bool end_of_word_from_edge_rec(const EDGE_RECORD &edge_rec) const
Returns true if this edge marks the end of a word.
Definition: dawg.h:223
bool marker_flag_from_edge_rec(const EDGE_RECORD &edge_rec) const
Returns the marker flag of this edge.
Definition: dawg.h:214
void set_marker_flag_in_edge_rec(EDGE_RECORD *edge_rec)
Sets this edge record to be the last one in a sequence of edges.
Definition: dawg.h:237
UNICHAR_ID unichar_id_from_edge_rec(const EDGE_RECORD &edge_rec) const
Returns UNICHAR_ID recorded in this edge.
Definition: dawg.h:227
PermuterType perm_
Permuter code that should be used if the word is found in this Dawg.
Definition: dawg.h:305
int debug_level_
Definition: dawg.h:317
EDGE_VECTOR backward_edges
Definition: trie.h:43
EDGE_VECTOR forward_edges
Definition: trie.h:42
UNICHAR_ID alpha_pattern_
Definition: trie.h:410
void link_edge(EDGE_RECORD *edge, NODE_REF nxt, bool repeats, int direction, bool word_end, UNICHAR_ID unichar_id)
Definition: trie.h:295
void KillEdge(EDGE_RECORD *edge_rec) const
Definition: trie.h:150
bool initialized_patterns_
Definition: trie.h:416
static const char kLowerPatternUnicode[]
Definition: trie.h:70
bool read_and_add_word_list(const char *filename, const UNICHARSET &unicharset, Trie::RTLReversePolicy reverse)
Definition: trie.cpp:273
static const char kAlphanumPatternUnicode[]
Definition: trie.h:68
void remove_edge(NODE_REF node1, NODE_REF node2, bool word_end, UNICHAR_ID unichar_id)
Definition: trie.h:369
bool add_new_edge(NODE_REF node1, NODE_REF node2, bool repeats, bool word_end, UNICHAR_ID unichar_id)
Definition: trie.h:348
NODE_REF next_node(EDGE_REF edge_ref) const override
Definition: trie.h:123
void initialize_patterns(UNICHARSET *unicharset)
Definition: trie.cpp:332
TRIE_NODES nodes_
Definition: trie.h:402
bool eliminate_redundant_edges(NODE_REF node, const EDGE_RECORD &edge1, const EDGE_RECORD &edge2)
Definition: trie.cpp:553
void clear()
Definition: trie.cpp:50
void print_all(const char *msg, int max_num_edges)
Definition: trie.h:326
static const char kUpperPatternUnicode[]
Definition: trie.h:71
UNICHAR_ID digit_pattern_
Definition: trie.h:411
SquishedDawg * trie_to_dawg()
Definition: trie.cpp:508
bool add_edge_linkage(NODE_REF node1, NODE_REF node2, bool repeats, int direction, bool word_end, UNICHAR_ID unichar_id)
Definition: trie.cpp:110
EDGE_REF edge_char_of(NODE_REF node_ref, UNICHAR_ID unichar_id, bool word_end) const override
Definition: trie.h:95
UNICHAR_ID lower_pattern_
Definition: trie.h:414
static const char kDigitPatternUnicode[]
Definition: trie.h:67
bool read_pattern_list(const char *filename, const UNICHARSET &unicharset)
Definition: trie.cpp:390
void reduce_node_input(NODE_REF node, std::vector< bool > &reduced_nodes)
Definition: trie.cpp:660
UNICHAR_ID upper_pattern_
Definition: trie.h:415
UNICHAR_ID punc_pattern_
Definition: trie.h:413
void remove_edge_linkage(NODE_REF node1, NODE_REF node2, int direction, bool word_end, UNICHAR_ID unichar_id)
Definition: trie.cpp:474
void sort_edges(EDGE_VECTOR *edges)
Definition: trie.cpp:644
bool reduce_lettered_edges(EDGE_INDEX edge_index, UNICHAR_ID unichar_id, NODE_REF node, EDGE_VECTOR *backward_edges, std::vector< bool > &reduced_nodes)
Definition: trie.cpp:596
UNICHAR_ID alphanum_pattern_
Definition: trie.h:412
static const char kPuncPatternUnicode[]
Definition: trie.h:69
RTLReversePolicy
Definition: trie.h:55
@ RRP_REVERSE_IF_HAS_RTL
Definition: trie.h:57
@ RRP_FORCE_REVERSE
Definition: trie.h:58
void unichar_id_to_patterns(UNICHAR_ID unichar_id, const UNICHARSET &unicharset, std::vector< UNICHAR_ID > *vec) const override
Definition: trie.cpp:349
bool add_word_to_dawg(const WERD_CHOICE &word, const std::vector< bool > *repetitions)
Definition: trie.cpp:159
std::vector< EDGE_INDEX > root_back_freelist_
Definition: trie.h:404
UNICHAR_ID character_class_to_pattern(char ch)
Definition: trie.cpp:372
bool add_word_list(const std::vector< std::string > &words, const UNICHARSET &unicharset, Trie::RTLReversePolicy reverse_policy)
Definition: trie.cpp:310
void print_node(NODE_REF node, int max_num_edges) const override
Definition: trie.cpp:702
static const char * get_reverse_policy_name(RTLReversePolicy reverse_policy)
Definition: trie.cpp:45
uint64_t num_edges_
Definition: trie.h:405
static const char kAlphaPatternUnicode[]
Definition: trie.h:66
bool DeadEdge(const EDGE_RECORD &edge_rec) const
Definition: trie.h:154
NODE_REF new_dawg_node()
Definition: trie.cpp:267
bool can_be_eliminated(const EDGE_RECORD &edge_rec)
Definition: trie.h:319
static const int kSaneNumConcreteChars
Definition: trie.h:62
void print_edge_rec(const EDGE_RECORD &edge_rec) const
Definition: trie.h:311
bool read_word_list(const char *filename, std::vector< std::string > *words)
Definition: trie.cpp:284
void add_word_ending(EDGE_RECORD *edge, NODE_REF the_next_node, bool repeats, UNICHAR_ID unichar_id)
Definition: trie.cpp:144