tesseract v5.3.3.20231005
fullyconnected.h
Go to the documentation of this file.
1
2// File: fullyconnected.h
3// Description: Simple feed-forward layer with various non-linearities.
4// Author: Ray Smith
5//
6// (C) Copyright 2014, Google Inc.
7// Licensed under the Apache License, Version 2.0 (the "License");
8// you may not use this file except in compliance with the License.
9// You may obtain a copy of the License at
10// http://www.apache.org/licenses/LICENSE-2.0
11// Unless required by applicable law or agreed to in writing, software
12// distributed under the License is distributed on an "AS IS" BASIS,
13// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14// See the License for the specific language governing permissions and
15// limitations under the License.
17
18#ifndef TESSERACT_LSTM_FULLYCONNECTED_H_
19#define TESSERACT_LSTM_FULLYCONNECTED_H_
20
21#include "network.h"
22#include "networkscratch.h"
23#include "tesstypes.h"
24
25namespace tesseract {
26
27// C++ Implementation of the Softmax (output) class from lstm.py.
28class FullyConnected : public Network {
29public:
31 FullyConnected(const std::string &name, int ni, int no, NetworkType type);
32 ~FullyConnected() override = default;
33
34 // Returns the shape output from the network given an input shape (which may
35 // be partially unknown ie zero).
36 StaticShape OutputShape(const StaticShape &input_shape) const override;
37
38 std::string spec() const override {
39 std::string spec;
40 if (type_ == NT_TANH) {
41 spec += "Ft" + std::to_string(no_);
42 } else if (type_ == NT_LOGISTIC) {
43 spec += "Fs" + std::to_string(no_);
44 } else if (type_ == NT_RELU) {
45 spec += "Fr" + std::to_string(no_);
46 } else if (type_ == NT_LINEAR) {
47 spec += "Fl" + std::to_string(no_);
48 } else if (type_ == NT_POSCLIP) {
49 spec += "Fp" + std::to_string(no_);
50 } else if (type_ == NT_SYMCLIP) {
51 spec += "Fn" + std::to_string(no_);
52 } else if (type_ == NT_SOFTMAX) {
53 spec += "Fc" + std::to_string(no_);
54 } else {
55 spec += "Fm" + std::to_string(no_);
56 }
57 return spec;
58 }
59
60 // Changes the type to the given type. Used to commute a softmax to a
61 // non-output type for adding on other networks.
63 type_ = type;
64 }
65
66 // Suspends/Enables training by setting the training_ flag. Serialize and
67 // DeSerialize only operate on the run-time data if state is false.
68 void SetEnableTraining(TrainingState state) override;
69
70 // Sets up the network for training. Initializes weights using weights of
71 // scale `range` picked according to the random number generator `randomizer`.
72 int InitWeights(float range, TRand *randomizer) override;
73 // Recursively searches the network for softmaxes with old_no outputs,
74 // and remaps their outputs according to code_map. See network.h for details.
75 int RemapOutputs(int old_no, const std::vector<int> &code_map) override;
76
77 // Converts a float network to an int network.
78 void ConvertToInt() override;
79
80 // Provides debug output on the weights.
81 void DebugWeights() override;
82
83 // Writes to the given file. Returns false in case of error.
84 bool Serialize(TFile *fp) const override;
85 // Reads from the given file. Returns false in case of error.
86 bool DeSerialize(TFile *fp) override;
87
88 // Runs forward propagation of activations on the input line.
89 // See Network for a detailed discussion of the arguments.
90 void Forward(bool debug, const NetworkIO &input, const TransposedArray *input_transpose,
91 NetworkScratch *scratch, NetworkIO *output) override;
92 // Components of Forward so FullyConnected can be reused inside LSTM.
93 void SetupForward(const NetworkIO &input, const TransposedArray *input_transpose);
94 void ForwardTimeStep(int t, TFloat *output_line);
95 void ForwardTimeStep(const TFloat *d_input, int t, TFloat *output_line);
96 void ForwardTimeStep(const int8_t *i_input, int t, TFloat *output_line);
97
98 // Runs backward propagation of errors on the deltas line.
99 // See Network for a detailed discussion of the arguments.
100 bool Backward(bool debug, const NetworkIO &fwd_deltas, NetworkScratch *scratch,
101 NetworkIO *back_deltas) override;
102 // Components of Backward so FullyConnected can be reused inside LSTM.
103 void BackwardTimeStep(const NetworkIO &fwd_deltas, int t, TFloat *curr_errors,
104 TransposedArray *errors_t, TFloat *backprop);
105 void FinishBackward(const TransposedArray &errors_t);
106
107 // Updates the weights using the given learning rate, momentum and adam_beta.
108 // num_samples is used in the adam computation iff use_adam_ is true.
109 void Update(float learning_rate, float momentum, float adam_beta, int num_samples) override;
110 // Sums the products of weight updates in *this and other, splitting into
111 // positive (same direction) in *same and negative (different direction) in
112 // *changed.
113 void CountAlternators(const Network &other, TFloat *same, TFloat *changed) const override;
114
115protected:
116 // Weight arrays of size [no, ni + 1].
118 // Transposed copy of input used during training of size [ni, width].
120 // Pointer to transposed input stored elsewhere. If not null, this is used
121 // in preference to calculating the transpose and storing it in source_t_.
123 // Activations from forward pass of size [width, no].
125 // Memory of the integer mode input to forward as softmax always outputs
126 // float, so the information is otherwise lost.
128};
129
130} // namespace tesseract.
131
132#endif // TESSERACT_LSTM_FULLYCONNECTED_H_
TrainingState
Definition: network.h:90
NetworkType
Definition: network.h:41
@ NT_LINEAR
Definition: network.h:65
@ NT_RELU
Definition: network.h:64
@ NT_SOFTMAX
Definition: network.h:66
@ NT_LOGISTIC
Definition: network.h:60
@ NT_SYMCLIP
Definition: network.h:62
@ NT_POSCLIP
Definition: network.h:61
@ NT_TANH
Definition: network.h:63
double TFloat
Definition: tesstypes.h:39
void ForwardTimeStep(int t, TFloat *output_line)
std::string spec() const override
bool DeSerialize(TFile *fp) override
void FinishBackward(const TransposedArray &errors_t)
void SetupForward(const NetworkIO &input, const TransposedArray *input_transpose)
bool Backward(bool debug, const NetworkIO &fwd_deltas, NetworkScratch *scratch, NetworkIO *back_deltas) override
void SetEnableTraining(TrainingState state) override
const TransposedArray * external_source_
void Update(float learning_rate, float momentum, float adam_beta, int num_samples) override
int InitWeights(float range, TRand *randomizer) override
void Forward(bool debug, const NetworkIO &input, const TransposedArray *input_transpose, NetworkScratch *scratch, NetworkIO *output) override
void CountAlternators(const Network &other, TFloat *same, TFloat *changed) const override
void BackwardTimeStep(const NetworkIO &fwd_deltas, int t, TFloat *curr_errors, TransposedArray *errors_t, TFloat *backprop)
void ChangeType(NetworkType type)
int RemapOutputs(int old_no, const std::vector< int > &code_map) override
TESS_API FullyConnected(const std::string &name, int ni, int no, NetworkType type)
~FullyConnected() override=default
StaticShape OutputShape(const StaticShape &input_shape) const override
bool Serialize(TFile *fp) const override
NetworkType type_
Definition: network.h:300
const std::string & name() const
Definition: network.h:140
NetworkType type() const
Definition: network.h:110
#define TESS_API
Definition: export.h:32