tesseract v5.3.3.20231005
intmatcher.cpp
Go to the documentation of this file.
1/******************************************************************************
2 ** Filename: intmatcher.cpp
3 ** Purpose: Generic high level classification routines.
4 ** Author: Robert Moss
5 ** (c) Copyright Hewlett-Packard Company, 1988.
6 ** Licensed under the Apache License, Version 2.0 (the "License");
7 ** you may not use this file except in compliance with the License.
8 ** You may obtain a copy of the License at
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 ** Unless required by applicable law or agreed to in writing, software
11 ** distributed under the License is distributed on an "AS IS" BASIS,
12 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 ** See the License for the specific language governing permissions and
14 ** limitations under the License.
15 ******************************************************************************/
16
17// Include automatically generated configuration file if running autoconf.
18#ifdef HAVE_CONFIG_H
19# include "config_auto.h"
20#endif
21
22#include "intmatcher.h"
23
24#include "classify.h"
25#include "float2int.h"
26#include "fontinfo.h"
27#include "intproto.h"
28#include "scrollview.h"
29#include "shapetable.h"
30
31#include "helpers.h"
32
33#include <cassert>
34#include <cmath>
35
36namespace tesseract {
37
38/*----------------------------------------------------------------------------
39 Global Data Definitions and Declarations
40----------------------------------------------------------------------------*/
41// Parameters of the sigmoid used to convert similarity to evidence in the
42// similarity_evidence_table_ that is used to convert distance metric to an
43// 8 bit evidence value in the secondary matcher. (See IntMatcher::Init).
45const float IntegerMatcher::kSimilarityCenter = 0.0075f;
46
47static const uint8_t offset_table[] = {
48 255, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2,
49 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0,
50 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1,
51 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0,
52 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4,
53 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0,
54 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1,
55 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0,
56 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0};
57
58static const uint8_t next_table[] = {
59 0, 0, 0, 0x2, 0, 0x4, 0x4, 0x6, 0, 0x8, 0x8, 0x0a, 0x08, 0x0c, 0x0c, 0x0e,
60 0, 0x10, 0x10, 0x12, 0x10, 0x14, 0x14, 0x16, 0x10, 0x18, 0x18, 0x1a, 0x18, 0x1c, 0x1c, 0x1e,
61 0, 0x20, 0x20, 0x22, 0x20, 0x24, 0x24, 0x26, 0x20, 0x28, 0x28, 0x2a, 0x28, 0x2c, 0x2c, 0x2e,
62 0x20, 0x30, 0x30, 0x32, 0x30, 0x34, 0x34, 0x36, 0x30, 0x38, 0x38, 0x3a, 0x38, 0x3c, 0x3c, 0x3e,
63 0, 0x40, 0x40, 0x42, 0x40, 0x44, 0x44, 0x46, 0x40, 0x48, 0x48, 0x4a, 0x48, 0x4c, 0x4c, 0x4e,
64 0x40, 0x50, 0x50, 0x52, 0x50, 0x54, 0x54, 0x56, 0x50, 0x58, 0x58, 0x5a, 0x58, 0x5c, 0x5c, 0x5e,
65 0x40, 0x60, 0x60, 0x62, 0x60, 0x64, 0x64, 0x66, 0x60, 0x68, 0x68, 0x6a, 0x68, 0x6c, 0x6c, 0x6e,
66 0x60, 0x70, 0x70, 0x72, 0x70, 0x74, 0x74, 0x76, 0x70, 0x78, 0x78, 0x7a, 0x78, 0x7c, 0x7c, 0x7e,
67 0, 0x80, 0x80, 0x82, 0x80, 0x84, 0x84, 0x86, 0x80, 0x88, 0x88, 0x8a, 0x88, 0x8c, 0x8c, 0x8e,
68 0x80, 0x90, 0x90, 0x92, 0x90, 0x94, 0x94, 0x96, 0x90, 0x98, 0x98, 0x9a, 0x98, 0x9c, 0x9c, 0x9e,
69 0x80, 0xa0, 0xa0, 0xa2, 0xa0, 0xa4, 0xa4, 0xa6, 0xa0, 0xa8, 0xa8, 0xaa, 0xa8, 0xac, 0xac, 0xae,
70 0xa0, 0xb0, 0xb0, 0xb2, 0xb0, 0xb4, 0xb4, 0xb6, 0xb0, 0xb8, 0xb8, 0xba, 0xb8, 0xbc, 0xbc, 0xbe,
71 0x80, 0xc0, 0xc0, 0xc2, 0xc0, 0xc4, 0xc4, 0xc6, 0xc0, 0xc8, 0xc8, 0xca, 0xc8, 0xcc, 0xcc, 0xce,
72 0xc0, 0xd0, 0xd0, 0xd2, 0xd0, 0xd4, 0xd4, 0xd6, 0xd0, 0xd8, 0xd8, 0xda, 0xd8, 0xdc, 0xdc, 0xde,
73 0xc0, 0xe0, 0xe0, 0xe2, 0xe0, 0xe4, 0xe4, 0xe6, 0xe0, 0xe8, 0xe8, 0xea, 0xe8, 0xec, 0xec, 0xee,
74 0xe0, 0xf0, 0xf0, 0xf2, 0xf0, 0xf4, 0xf4, 0xf6, 0xf0, 0xf8, 0xf8, 0xfa, 0xf8, 0xfc, 0xfc, 0xfe};
75
76// See http://b/19318793 (#6) for a complete discussion.
77
86static void HeapSort(int n, int ra[], int rb[]) {
87 int i, rra, rrb;
88 int l, j, ir;
89
90 l = (n >> 1) + 1;
91 ir = n;
92 for (;;) {
93 if (l > 1) {
94 rra = ra[--l];
95 rrb = rb[l];
96 } else {
97 rra = ra[ir];
98 rrb = rb[ir];
99 ra[ir] = ra[1];
100 rb[ir] = rb[1];
101 if (--ir == 1) {
102 ra[1] = rra;
103 rb[1] = rrb;
104 return;
105 }
106 }
107 i = l;
108 j = l << 1;
109 while (j <= ir) {
110 if (j < ir && ra[j] < ra[j + 1]) {
111 ++j;
112 }
113 if (rra < ra[j]) {
114 ra[i] = ra[j];
115 rb[i] = rb[j];
116 j += (i = j);
117 } else {
118 j = ir + 1;
119 }
120 }
121 ra[i] = rra;
122 rb[i] = rrb;
123 }
124}
125
126// Encapsulation of the intermediate data and computations made by the class
127// pruner. The class pruner implements a simple linear classifier on binary
128// features by heavily quantizing the feature space, and applying
129// NUM_BITS_PER_CLASS (2)-bit weights to the features. Lack of resolution in
130// weights is compensated by a non-constant bias that is dependent on the
131// number of features present.
133public:
134 ClassPruner(int max_classes) {
135 // The unrolled loop in ComputeScores means that the array sizes need to
136 // be rounded up so that the array is big enough to accommodate the extra
137 // entries accessed by the unrolling. Each pruner word is of sized
138 // BITS_PER_WERD and each entry is NUM_BITS_PER_CLASS, so there are
139 // BITS_PER_WERD / NUM_BITS_PER_CLASS entries.
140 // See ComputeScores.
141 max_classes_ = max_classes;
142 rounded_classes_ =
144 class_count_ = new int[rounded_classes_];
145 norm_count_ = new int[rounded_classes_];
146 sort_key_ = new int[rounded_classes_ + 1];
147 sort_index_ = new int[rounded_classes_ + 1];
148 for (int i = 0; i < rounded_classes_; i++) {
149 class_count_[i] = 0;
150 }
151 pruning_threshold_ = 0;
152 num_features_ = 0;
153 num_classes_ = 0;
154 }
155
157 delete[] class_count_;
158 delete[] norm_count_;
159 delete[] sort_key_;
160 delete[] sort_index_;
161 }
162
165 void ComputeScores(const INT_TEMPLATES_STRUCT *int_templates, int num_features,
166 const INT_FEATURE_STRUCT *features) {
167 num_features_ = num_features;
168 auto num_pruners = int_templates->NumClassPruners;
169 for (int f = 0; f < num_features; ++f) {
170 const INT_FEATURE_STRUCT *feature = &features[f];
171 // Quantize the feature to NUM_CP_BUCKETS*NUM_CP_BUCKETS*NUM_CP_BUCKETS.
172 int x = feature->X * NUM_CP_BUCKETS >> 8;
173 int y = feature->Y * NUM_CP_BUCKETS >> 8;
174 int theta = feature->Theta * NUM_CP_BUCKETS >> 8;
175 int class_id = 0;
176 // Each CLASS_PRUNER_STRUCT only covers CLASSES_PER_CP(32) classes, so
177 // we need a collection of them, indexed by pruner_set.
178 for (unsigned pruner_set = 0; pruner_set < num_pruners; ++pruner_set) {
179 // Look up quantized feature in a 3-D array, an array of weights for
180 // each class.
181 const uint32_t *pruner_word_ptr = int_templates->ClassPruners[pruner_set]->p[x][y][theta];
182 for (int word = 0; word < WERDS_PER_CP_VECTOR; ++word) {
183 uint32_t pruner_word = *pruner_word_ptr++;
184 // This inner loop is unrolled to speed up the ClassPruner.
185 // Currently gcc would not unroll it unless it is set to O3
186 // level of optimization or -funroll-loops is specified.
187 /*
188uint32_t class_mask = (1 << NUM_BITS_PER_CLASS) - 1;
189for (int bit = 0; bit < BITS_PER_WERD/NUM_BITS_PER_CLASS; bit++) {
190 class_count_[class_id++] += pruner_word & class_mask;
191 pruner_word >>= NUM_BITS_PER_CLASS;
192}
193*/
194 class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
195 pruner_word >>= NUM_BITS_PER_CLASS;
196 class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
197 pruner_word >>= NUM_BITS_PER_CLASS;
198 class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
199 pruner_word >>= NUM_BITS_PER_CLASS;
200 class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
201 pruner_word >>= NUM_BITS_PER_CLASS;
202 class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
203 pruner_word >>= NUM_BITS_PER_CLASS;
204 class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
205 pruner_word >>= NUM_BITS_PER_CLASS;
206 class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
207 pruner_word >>= NUM_BITS_PER_CLASS;
208 class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
209 pruner_word >>= NUM_BITS_PER_CLASS;
210 class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
211 pruner_word >>= NUM_BITS_PER_CLASS;
212 class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
213 pruner_word >>= NUM_BITS_PER_CLASS;
214 class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
215 pruner_word >>= NUM_BITS_PER_CLASS;
216 class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
217 pruner_word >>= NUM_BITS_PER_CLASS;
218 class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
219 pruner_word >>= NUM_BITS_PER_CLASS;
220 class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
221 pruner_word >>= NUM_BITS_PER_CLASS;
222 class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
223 pruner_word >>= NUM_BITS_PER_CLASS;
224 class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
225 }
226 }
227 }
228 }
229
235 void AdjustForExpectedNumFeatures(const uint16_t *expected_num_features, int cutoff_strength) {
236 for (int class_id = 0; class_id < max_classes_; ++class_id) {
237 if (num_features_ < expected_num_features[class_id]) {
238 int deficit = expected_num_features[class_id] - num_features_;
239 class_count_[class_id] -=
240 class_count_[class_id] * deficit / (num_features_ * cutoff_strength + deficit);
241 }
242 }
243 }
244
247 void DisableDisabledClasses(const UNICHARSET &unicharset) {
248 for (int class_id = 0; class_id < max_classes_; ++class_id) {
249 if (!unicharset.get_enabled(class_id)) {
250 class_count_[class_id] = 0; // This char is disabled!
251 }
252 }
253 }
254
256 void DisableFragments(const UNICHARSET &unicharset) {
257 for (int class_id = 0; class_id < max_classes_; ++class_id) {
258 // Do not include character fragments in the class pruner
259 // results if disable_character_fragments is true.
260 if (unicharset.get_fragment(class_id)) {
261 class_count_[class_id] = 0;
262 }
263 }
264 }
265
270 void NormalizeForXheight(int norm_multiplier, const uint8_t *normalization_factors) {
271 for (int class_id = 0; class_id < max_classes_; class_id++) {
272 norm_count_[class_id] =
273 class_count_[class_id] - ((norm_multiplier * normalization_factors[class_id]) >> 8);
274 }
275 }
276
279 for (int class_id = 0; class_id < max_classes_; class_id++) {
280 norm_count_[class_id] = class_count_[class_id];
281 }
282 }
283
287 void PruneAndSort(int pruning_factor, int keep_this, bool max_of_non_fragments,
288 const UNICHARSET &unicharset) {
289 int max_count = 0;
290 for (int c = 0; c < max_classes_; ++c) {
291 if (norm_count_[c] > max_count &&
292 // This additional check is added in order to ensure that
293 // the classifier will return at least one non-fragmented
294 // character match.
295 // TODO(daria): verify that this helps accuracy and does not
296 // hurt performance.
297 (!max_of_non_fragments || !unicharset.get_fragment(c))) {
298 max_count = norm_count_[c];
299 }
300 }
301 // Prune Classes.
302 pruning_threshold_ = (max_count * pruning_factor) >> 8;
303 // Select Classes.
304 if (pruning_threshold_ < 1) {
305 pruning_threshold_ = 1;
306 }
307 num_classes_ = 0;
308 for (int class_id = 0; class_id < max_classes_; class_id++) {
309 if (norm_count_[class_id] >= pruning_threshold_ || class_id == keep_this) {
310 ++num_classes_;
311 sort_index_[num_classes_] = class_id;
312 sort_key_[num_classes_] = norm_count_[class_id];
313 }
314 }
315
316 // Sort Classes using Heapsort Algorithm.
317 if (num_classes_ > 1) {
318 HeapSort(num_classes_, sort_key_, sort_index_);
319 }
320 }
321
324 void DebugMatch(const Classify &classify, const INT_TEMPLATES_STRUCT *int_templates,
325 const INT_FEATURE_STRUCT *features) const {
326 int num_pruners = int_templates->NumClassPruners;
327 int max_num_classes = int_templates->NumClasses;
328 for (int f = 0; f < num_features_; ++f) {
329 const INT_FEATURE_STRUCT *feature = &features[f];
330 tprintf("F=%3d(%d,%d,%d),", f, feature->X, feature->Y, feature->Theta);
331 // Quantize the feature to NUM_CP_BUCKETS*NUM_CP_BUCKETS*NUM_CP_BUCKETS.
332 int x = feature->X * NUM_CP_BUCKETS >> 8;
333 int y = feature->Y * NUM_CP_BUCKETS >> 8;
334 int theta = feature->Theta * NUM_CP_BUCKETS >> 8;
335 int class_id = 0;
336 for (int pruner_set = 0; pruner_set < num_pruners; ++pruner_set) {
337 // Look up quantized feature in a 3-D array, an array of weights for
338 // each class.
339 const uint32_t *pruner_word_ptr = int_templates->ClassPruners[pruner_set]->p[x][y][theta];
340 for (int word = 0; word < WERDS_PER_CP_VECTOR; ++word) {
341 uint32_t pruner_word = *pruner_word_ptr++;
342 for (int word_class = 0; word_class < 16 && class_id < max_num_classes;
343 ++word_class, ++class_id) {
344 if (norm_count_[class_id] >= pruning_threshold_) {
345 tprintf(" %s=%d,", classify.ClassIDToDebugStr(int_templates, class_id, 0).c_str(),
346 pruner_word & CLASS_PRUNER_CLASS_MASK);
347 }
348 pruner_word >>= NUM_BITS_PER_CLASS;
349 }
350 }
351 tprintf("\n");
352 }
353 }
354 }
355
357 void SummarizeResult(const Classify &classify, const INT_TEMPLATES_STRUCT *int_templates,
358 const uint16_t *expected_num_features, int norm_multiplier,
359 const uint8_t *normalization_factors) const {
360 tprintf("CP:%d classes, %d features:\n", num_classes_, num_features_);
361 for (int i = 0; i < num_classes_; ++i) {
362 int class_id = sort_index_[num_classes_ - i];
363 std::string class_string = classify.ClassIDToDebugStr(int_templates, class_id, 0);
364 tprintf(
365 "%s:Initial=%d, E=%d, Xht-adj=%d, N=%d, Rat=%.2f\n", class_string.c_str(),
366 class_count_[class_id], expected_num_features[class_id],
367 (norm_multiplier * normalization_factors[class_id]) >> 8, sort_key_[num_classes_ - i],
368 100.0 - 100.0 * sort_key_[num_classes_ - i] / (CLASS_PRUNER_CLASS_MASK * num_features_));
369 }
370 }
371
374 int SetupResults(std::vector<CP_RESULT_STRUCT> *results) const {
375 results->clear();
376 results->resize(num_classes_);
377 for (int c = 0; c < num_classes_; ++c) {
378 (*results)[c].Class = sort_index_[num_classes_ - c];
379 (*results)[c].Rating =
380 1.0f - sort_key_[num_classes_ - c] /
381 (static_cast<float>(CLASS_PRUNER_CLASS_MASK) * num_features_);
382 }
383 return num_classes_;
384 }
385
386private:
388 int *class_count_;
392 int *norm_count_;
394 int *sort_key_;
396 int *sort_index_;
398 int max_classes_;
400 int rounded_classes_;
402 int pruning_threshold_;
404 int num_features_;
406 int num_classes_;
407};
408
409/*----------------------------------------------------------------------------
410 Public Code
411----------------------------------------------------------------------------*/
427int Classify::PruneClasses(const INT_TEMPLATES_STRUCT *int_templates, int num_features,
428 int keep_this, const INT_FEATURE_STRUCT *features,
429 const uint8_t *normalization_factors,
430 const uint16_t *expected_num_features,
431 std::vector<CP_RESULT_STRUCT> *results) {
432 ClassPruner pruner(int_templates->NumClasses);
433 // Compute initial match scores for all classes.
434 pruner.ComputeScores(int_templates, num_features, features);
435 // Adjust match scores for number of expected features.
436 pruner.AdjustForExpectedNumFeatures(expected_num_features, classify_cp_cutoff_strength);
437 // Apply disabled classes in unicharset - only works without a shape_table.
438 if (shape_table_ == nullptr) {
440 }
441 // If fragments are disabled, remove them, also only without a shape table.
442 if (disable_character_fragments && shape_table_ == nullptr) {
444 }
445
446 // If we have good x-heights, apply the given normalization factors.
447 if (normalization_factors != nullptr) {
448 pruner.NormalizeForXheight(classify_class_pruner_multiplier, normalization_factors);
449 } else {
450 pruner.NoNormalization();
451 }
452 // Do the actual pruning and sort the short-list.
453 pruner.PruneAndSort(classify_class_pruner_threshold, keep_this, shape_table_ == nullptr,
454 unicharset);
455
456 if (classify_debug_level > 2) {
457 pruner.DebugMatch(*this, int_templates, features);
458 }
459 if (classify_debug_level > 1) {
460 pruner.SummarizeResult(*this, int_templates, expected_num_features,
461 classify_class_pruner_multiplier, normalization_factors);
462 }
463 // Convert to the expected output format.
464 return pruner.SetupResults(results);
465}
466
482void IntegerMatcher::Match(INT_CLASS_STRUCT *ClassTemplate, BIT_VECTOR ProtoMask, BIT_VECTOR ConfigMask,
483 int16_t NumFeatures, const INT_FEATURE_STRUCT *Features,
484 UnicharRating *Result, int AdaptFeatureThreshold, int Debug,
485 bool SeparateDebugWindows) {
486 auto *tables = new ScratchEvidence();
487 int Feature;
488
489 if (MatchDebuggingOn(Debug)) {
490 tprintf("Integer Matcher -------------------------------------------\n");
491 }
492
493 tables->Clear(ClassTemplate);
494 Result->feature_misses = 0;
495
496 for (Feature = 0; Feature < NumFeatures; Feature++) {
497 int csum = UpdateTablesForFeature(ClassTemplate, ProtoMask, ConfigMask, Feature,
498 &Features[Feature], tables, Debug);
499 // Count features that were missed over all configs.
500 if (csum == 0) {
501 ++Result->feature_misses;
502 }
503 }
504
505#ifndef GRAPHICS_DISABLED
506 if (PrintProtoMatchesOn(Debug) || PrintMatchSummaryOn(Debug)) {
507 DebugFeatureProtoError(ClassTemplate, ProtoMask, ConfigMask, *tables, NumFeatures, Debug);
508 }
509
510 if (DisplayProtoMatchesOn(Debug)) {
511 DisplayProtoDebugInfo(ClassTemplate, ConfigMask, *tables, SeparateDebugWindows);
512 }
513
514 if (DisplayFeatureMatchesOn(Debug)) {
515 DisplayFeatureDebugInfo(ClassTemplate, ProtoMask, ConfigMask, NumFeatures, Features,
516 AdaptFeatureThreshold, Debug, SeparateDebugWindows);
517 }
518#endif
519
520 tables->UpdateSumOfProtoEvidences(ClassTemplate, ConfigMask);
521 tables->NormalizeSums(ClassTemplate, NumFeatures);
522
523 FindBestMatch(ClassTemplate, *tables, Result);
524
525#ifndef GRAPHICS_DISABLED
526 if (PrintMatchSummaryOn(Debug)) {
527 Result->Print();
528 }
529
530 if (MatchDebuggingOn(Debug)) {
531 tprintf("Match Complete --------------------------------------------\n");
532 }
533#endif
534
535 delete tables;
536}
537
556 BIT_VECTOR ConfigMask, int16_t NumFeatures,
557 INT_FEATURE_ARRAY Features, PROTO_ID *ProtoArray,
558 int AdaptProtoThreshold, int Debug) {
559 auto *tables = new ScratchEvidence();
560 int NumGoodProtos = 0;
561
562 /* DEBUG opening heading */
563 if (MatchDebuggingOn(Debug)) {
564 tprintf("Find Good Protos -------------------------------------------\n");
565 }
566
567 tables->Clear(ClassTemplate);
568
569 for (int Feature = 0; Feature < NumFeatures; Feature++) {
570 UpdateTablesForFeature(ClassTemplate, ProtoMask, ConfigMask, Feature, &(Features[Feature]),
571 tables, Debug);
572 }
573
574#ifndef GRAPHICS_DISABLED
575 if (PrintProtoMatchesOn(Debug) || PrintMatchSummaryOn(Debug)) {
576 DebugFeatureProtoError(ClassTemplate, ProtoMask, ConfigMask, *tables, NumFeatures, Debug);
577 }
578#endif
579
580 /* Average Proto Evidences & Find Good Protos */
581 for (int proto = 0; proto < ClassTemplate->NumProtos; proto++) {
582 /* Compute Average for Actual Proto */
583 int Temp = 0;
584 for (uint8_t i = 0; i < MAX_PROTO_INDEX && i < ClassTemplate->ProtoLengths[proto]; i++) {
585 Temp += tables->proto_evidence_[proto][i];
586 }
587
588 Temp /= ClassTemplate->ProtoLengths[proto];
589
590 /* Find Good Protos */
591 if (Temp >= AdaptProtoThreshold) {
592 *ProtoArray = proto;
593 ProtoArray++;
594 NumGoodProtos++;
595 }
596 }
597
598 if (MatchDebuggingOn(Debug)) {
599 tprintf("Match Complete --------------------------------------------\n");
600 }
601 delete tables;
602
603 return NumGoodProtos;
604}
605
620 BIT_VECTOR ConfigMask, int16_t NumFeatures,
621 INT_FEATURE_ARRAY Features, FEATURE_ID *FeatureArray,
622 int AdaptFeatureThreshold, int Debug) {
623 auto *tables = new ScratchEvidence();
624 int NumBadFeatures = 0;
625
626 /* DEBUG opening heading */
627 if (MatchDebuggingOn(Debug)) {
628 tprintf("Find Bad Features -------------------------------------------\n");
629 }
630
631 tables->Clear(ClassTemplate);
632
633 for (int Feature = 0; Feature < NumFeatures; Feature++) {
634 UpdateTablesForFeature(ClassTemplate, ProtoMask, ConfigMask, Feature, &Features[Feature],
635 tables, Debug);
636
637 /* Find Best Evidence for Current Feature */
638 int best = 0;
639 assert(ClassTemplate->NumConfigs < MAX_NUM_CONFIGS);
640 for (int i = 0; i < MAX_NUM_CONFIGS && i < ClassTemplate->NumConfigs; i++) {
641 if (tables->feature_evidence_[i] > best) {
642 best = tables->feature_evidence_[i];
643 }
644 }
645
646 /* Find Bad Features */
647 if (best < AdaptFeatureThreshold) {
648 *FeatureArray = Feature;
649 FeatureArray++;
650 NumBadFeatures++;
651 }
652 }
653
654#ifndef GRAPHICS_DISABLED
655 if (PrintProtoMatchesOn(Debug) || PrintMatchSummaryOn(Debug)) {
656 DebugFeatureProtoError(ClassTemplate, ProtoMask, ConfigMask, *tables, NumFeatures, Debug);
657 }
658#endif
659
660 if (MatchDebuggingOn(Debug)) {
661 tprintf("Match Complete --------------------------------------------\n");
662 }
663
664 delete tables;
665 return NumBadFeatures;
666}
667
669 : classify_debug_level_(classify_debug_level) {
670 /* Initialize table for evidence to similarity lookup */
671 for (int i = 0; i < SE_TABLE_SIZE; i++) {
672 uint32_t IntSimilarity = i << (27 - SE_TABLE_BITS);
673 double Similarity = (static_cast<double>(IntSimilarity)) / 65536.0 / 65536.0;
674 double evidence = Similarity / kSimilarityCenter;
675 evidence = 255.0 / (evidence * evidence + 1.0);
676
677 if (kSEExponentialMultiplier > 0.0) {
678 double scale =
679 1.0 - std::exp(-kSEExponentialMultiplier) *
680 exp(kSEExponentialMultiplier * (static_cast<double>(i) / SE_TABLE_SIZE));
681 evidence *= ClipToRange(scale, 0.0, 1.0);
682 }
683
684 similarity_evidence_table_[i] = static_cast<uint8_t>(evidence + 0.5);
685 }
686
687 /* Initialize evidence computation variables */
688 evidence_table_mask_ = ((1 << kEvidenceTableBits) - 1) << (9 - kEvidenceTableBits);
689 mult_trunc_shift_bits_ = (14 - kIntEvidenceTruncBits);
690 table_trunc_shift_bits_ = (27 - SE_TABLE_BITS - (mult_trunc_shift_bits_ << 1));
691 evidence_mult_mask_ = ((1 << kIntEvidenceTruncBits) - 1);
692}
693
694/*----------------------------------------------------------------------------
695 Private Code
696----------------------------------------------------------------------------*/
697void ScratchEvidence::Clear(const INT_CLASS_STRUCT *class_template) {
698 memset(sum_feature_evidence_, 0, class_template->NumConfigs * sizeof(sum_feature_evidence_[0]));
699 memset(proto_evidence_, 0, class_template->NumProtos * sizeof(proto_evidence_[0]));
700}
701
703 memset(feature_evidence_, 0, class_template->NumConfigs * sizeof(feature_evidence_[0]));
704}
705
709static void IMDebugConfiguration(int FeatureNum, uint16_t ActualProtoNum, uint8_t Evidence,
710 uint32_t ConfigWord) {
711 tprintf("F = %3d, P = %3d, E = %3d, Configs = ", FeatureNum, static_cast<int>(ActualProtoNum),
712 static_cast<int>(Evidence));
713 while (ConfigWord) {
714 if (ConfigWord & 1) {
715 tprintf("1");
716 } else {
717 tprintf("0");
718 }
719 ConfigWord >>= 1;
720 }
721 tprintf("\n");
722}
723
727static void IMDebugConfigurationSum(int FeatureNum, uint8_t *FeatureEvidence, int32_t ConfigCount) {
728 tprintf("F=%3d, C=", FeatureNum);
729 for (int ConfigNum = 0; ConfigNum < ConfigCount; ConfigNum++) {
730 tprintf("%4d", FeatureEvidence[ConfigNum]);
731 }
732 tprintf("\n");
733}
734
746int IntegerMatcher::UpdateTablesForFeature(INT_CLASS_STRUCT *ClassTemplate, BIT_VECTOR ProtoMask,
747 BIT_VECTOR ConfigMask, int FeatureNum,
748 const INT_FEATURE_STRUCT *Feature,
749 ScratchEvidence *tables, int Debug) {
750 uint32_t ConfigWord;
751 uint32_t ProtoWord;
752 uint32_t ProtoNum;
753 uint32_t ActualProtoNum;
754 uint8_t proto_byte;
755 int32_t proto_word_offset;
756 int32_t proto_offset;
757 PROTO_SET_STRUCT *ProtoSet;
758 uint32_t *ProtoPrunerPtr;
759 INT_PROTO_STRUCT *Proto;
760 int ProtoSetIndex;
761 uint8_t Evidence;
762 uint32_t XFeatureAddress;
763 uint32_t YFeatureAddress;
764 uint32_t ThetaFeatureAddress;
765
766 tables->ClearFeatureEvidence(ClassTemplate);
767
768 /* Precompute Feature Address offset for Proto Pruning */
769 XFeatureAddress = ((Feature->X >> 2) << 1);
770 YFeatureAddress = (NUM_PP_BUCKETS << 1) + ((Feature->Y >> 2) << 1);
771 ThetaFeatureAddress = (NUM_PP_BUCKETS << 2) + ((Feature->Theta >> 2) << 1);
772
773 for (ProtoSetIndex = 0, ActualProtoNum = 0; ProtoSetIndex < ClassTemplate->NumProtoSets;
774 ProtoSetIndex++) {
775 ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex];
776 ProtoPrunerPtr = reinterpret_cast<uint32_t *>((*ProtoSet).ProtoPruner);
777 for (ProtoNum = 0; ProtoNum < PROTOS_PER_PROTO_SET; ProtoNum += (PROTOS_PER_PROTO_SET >> 1),
778 ActualProtoNum += (PROTOS_PER_PROTO_SET >> 1), ProtoMask++, ProtoPrunerPtr++) {
779 /* Prune Protos of current Proto Set */
780 ProtoWord = *(ProtoPrunerPtr + XFeatureAddress);
781 ProtoWord &= *(ProtoPrunerPtr + YFeatureAddress);
782 ProtoWord &= *(ProtoPrunerPtr + ThetaFeatureAddress);
783 ProtoWord &= *ProtoMask;
784
785 if (ProtoWord != 0) {
786 proto_byte = ProtoWord & 0xff;
787 ProtoWord >>= 8;
788 proto_word_offset = 0;
789 while (ProtoWord != 0 || proto_byte != 0) {
790 while (proto_byte == 0) {
791 proto_byte = ProtoWord & 0xff;
792 ProtoWord >>= 8;
793 proto_word_offset += 8;
794 }
795 proto_offset = offset_table[proto_byte] + proto_word_offset;
796 proto_byte = next_table[proto_byte];
797 Proto = &(ProtoSet->Protos[ProtoNum + proto_offset]);
798 ConfigWord = Proto->Configs[0];
799 int32_t A3 = (((Proto->A * (Feature->X - 128)) * 2) - (Proto->B * (Feature->Y - 128)) +
800 (Proto->C * 512));
801 int32_t M3 = ((static_cast<int8_t>(Feature->Theta - Proto->Angle)) * kIntThetaFudge) * 2;
802
803 if (A3 < 0) {
804 A3 = ~A3;
805 }
806 if (M3 < 0) {
807 M3 = ~M3;
808 }
809 A3 >>= mult_trunc_shift_bits_;
810 M3 >>= mult_trunc_shift_bits_;
811 if (static_cast<uint32_t>(A3) > evidence_mult_mask_) {
812 A3 = evidence_mult_mask_;
813 }
814 if (static_cast<uint32_t>(M3) > evidence_mult_mask_) {
815 M3 = evidence_mult_mask_;
816 }
817
818 uint32_t A4 = (A3 * A3) + (M3 * M3);
819 A4 >>= table_trunc_shift_bits_;
820 if (A4 > evidence_table_mask_) {
821 Evidence = 0;
822 } else {
823 Evidence = similarity_evidence_table_[A4];
824 }
825
826 if (PrintFeatureMatchesOn(Debug)) {
827 IMDebugConfiguration(FeatureNum, ActualProtoNum + proto_offset, Evidence, ConfigWord);
828 }
829
830 ConfigWord &= *ConfigMask;
831
832 uint8_t feature_evidence_index = 0;
833 uint8_t config_byte = 0;
834 while (ConfigWord != 0 || config_byte != 0) {
835 while (config_byte == 0) {
836 config_byte = ConfigWord & 0xff;
837 ConfigWord >>= 8;
838 feature_evidence_index += 8;
839 }
840 const uint8_t config_offset = offset_table[config_byte] + feature_evidence_index - 8;
841 config_byte = next_table[config_byte];
842 if (Evidence > tables->feature_evidence_[config_offset]) {
843 tables->feature_evidence_[config_offset] = Evidence;
844 }
845 }
846
847 uint8_t ProtoIndex = ClassTemplate->ProtoLengths[ActualProtoNum + proto_offset];
848 if (ProtoIndex > MAX_PROTO_INDEX) {
849 // Avoid buffer overflow.
850 // TODO: A better fix is still open.
851 ProtoIndex = MAX_PROTO_INDEX;
852 }
853 uint8_t *UINT8Pointer = &(tables->proto_evidence_[ActualProtoNum + proto_offset][0]);
854 for (; Evidence > 0 && ProtoIndex > 0; ProtoIndex--, UINT8Pointer++) {
855 if (Evidence > *UINT8Pointer) {
856 uint8_t Temp = *UINT8Pointer;
857 *UINT8Pointer = Evidence;
858 Evidence = Temp;
859 }
860 }
861 }
862 }
863 }
864 }
865
866 if (PrintFeatureMatchesOn(Debug)) {
867 IMDebugConfigurationSum(FeatureNum, tables->feature_evidence_, ClassTemplate->NumConfigs);
868 }
869
870 int *IntPointer = tables->sum_feature_evidence_;
871 uint8_t *UINT8Pointer = tables->feature_evidence_;
872 int SumOverConfigs = 0;
873 for (int ConfigNum = ClassTemplate->NumConfigs; ConfigNum > 0; ConfigNum--) {
874 int evidence = *UINT8Pointer++;
875 SumOverConfigs += evidence;
876 *IntPointer++ += evidence;
877 }
878 return SumOverConfigs;
879}
880
884#ifndef GRAPHICS_DISABLED
885void IntegerMatcher::DebugFeatureProtoError(INT_CLASS_STRUCT *ClassTemplate, BIT_VECTOR ProtoMask,
886 BIT_VECTOR ConfigMask, const ScratchEvidence &tables,
887 int16_t NumFeatures, int Debug) {
888 float ProtoConfigs[MAX_NUM_CONFIGS];
889 int ConfigNum;
890 uint32_t ConfigWord;
891 int ProtoSetIndex;
892 uint16_t ProtoNum;
893 uint8_t ProtoWordNum;
894 PROTO_SET_STRUCT *ProtoSet;
895 uint16_t ActualProtoNum;
896
897 if (PrintMatchSummaryOn(Debug)) {
898 tprintf("Configuration Mask:\n");
899 for (ConfigNum = 0; ConfigNum < ClassTemplate->NumConfigs; ConfigNum++) {
900 tprintf("%1d", (((*ConfigMask) >> ConfigNum) & 1));
901 }
902 tprintf("\n");
903
904 tprintf("Feature Error for Configurations:\n");
905 for (ConfigNum = 0; ConfigNum < ClassTemplate->NumConfigs; ConfigNum++) {
906 tprintf(" %5.1f", 100.0 * (1.0 - static_cast<float>(tables.sum_feature_evidence_[ConfigNum]) /
907 NumFeatures / 256.0));
908 }
909 tprintf("\n\n\n");
910 }
911
912 if (PrintMatchSummaryOn(Debug)) {
913 tprintf("Proto Mask:\n");
914 for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets; ProtoSetIndex++) {
915 ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET);
916 for (ProtoWordNum = 0; ProtoWordNum < 2; ProtoWordNum++, ProtoMask++) {
917 ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET);
918 for (ProtoNum = 0; ((ProtoNum < (PROTOS_PER_PROTO_SET >> 1)) &&
919 (ActualProtoNum < ClassTemplate->NumProtos));
920 ProtoNum++, ActualProtoNum++) {
921 tprintf("%1d", (((*ProtoMask) >> ProtoNum) & 1));
922 }
923 tprintf("\n");
924 }
925 }
926 tprintf("\n");
927 }
928
929 for (int i = 0; i < ClassTemplate->NumConfigs; i++) {
930 ProtoConfigs[i] = 0;
931 }
932
933 if (PrintProtoMatchesOn(Debug)) {
934 tprintf("Proto Evidence:\n");
935 for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets; ProtoSetIndex++) {
936 ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex];
937 ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET);
938 for (ProtoNum = 0;
939 ((ProtoNum < PROTOS_PER_PROTO_SET) && (ActualProtoNum < ClassTemplate->NumProtos));
940 ProtoNum++, ActualProtoNum++) {
941 tprintf("P %3d =", ActualProtoNum);
942 int temp = 0;
943 for (uint8_t j = 0; j < ClassTemplate->ProtoLengths[ActualProtoNum]; j++) {
944 uint8_t data = tables.proto_evidence_[ActualProtoNum][j];
945 tprintf(" %d", data);
946 temp += data;
947 }
948
949 tprintf(" = %6.4f%%\n", temp / 256.0 / ClassTemplate->ProtoLengths[ActualProtoNum]);
950
951 ConfigWord = ProtoSet->Protos[ProtoNum].Configs[0];
952 ConfigNum = 0;
953 while (ConfigWord) {
954 tprintf("%5d", ConfigWord & 1 ? temp : 0);
955 if (ConfigWord & 1) {
956 ProtoConfigs[ConfigNum] += temp;
957 }
958 ConfigNum++;
959 ConfigWord >>= 1;
960 }
961 tprintf("\n");
962 }
963 }
964 }
965
966 if (PrintMatchSummaryOn(Debug)) {
967 tprintf("Proto Error for Configurations:\n");
968 for (ConfigNum = 0; ConfigNum < ClassTemplate->NumConfigs; ConfigNum++) {
969 tprintf(" %5.1f", 100.0 * (1.0 - ProtoConfigs[ConfigNum] /
970 ClassTemplate->ConfigLengths[ConfigNum] / 256.0));
971 }
972 tprintf("\n\n");
973 }
974
975 if (PrintProtoMatchesOn(Debug)) {
976 tprintf("Proto Sum for Configurations:\n");
977 for (ConfigNum = 0; ConfigNum < ClassTemplate->NumConfigs; ConfigNum++) {
978 tprintf(" %4.1f", ProtoConfigs[ConfigNum] / 256.0);
979 }
980 tprintf("\n\n");
981
982 tprintf("Proto Length for Configurations:\n");
983 for (ConfigNum = 0; ConfigNum < ClassTemplate->NumConfigs; ConfigNum++) {
984 tprintf(" %4.1f", static_cast<float>(ClassTemplate->ConfigLengths[ConfigNum]));
985 }
986 tprintf("\n\n");
987 }
988}
989
990void IntegerMatcher::DisplayProtoDebugInfo(INT_CLASS_STRUCT *ClassTemplate, BIT_VECTOR ConfigMask,
991 const ScratchEvidence &tables,
992 bool SeparateDebugWindows) {
993 uint16_t ProtoNum;
994 uint16_t ActualProtoNum;
995 PROTO_SET_STRUCT *ProtoSet;
996 int ProtoSetIndex;
997
999 if (SeparateDebugWindows) {
1002 }
1003
1004 for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets; ProtoSetIndex++) {
1005 ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex];
1006 ActualProtoNum = ProtoSetIndex * PROTOS_PER_PROTO_SET;
1007 for (ProtoNum = 0;
1008 ((ProtoNum < PROTOS_PER_PROTO_SET) && (ActualProtoNum < ClassTemplate->NumProtos));
1009 ProtoNum++, ActualProtoNum++) {
1010 /* Compute Average for Actual Proto */
1011 int temp = 0;
1012 for (uint8_t i = 0; i < ClassTemplate->ProtoLengths[ActualProtoNum]; i++) {
1013 temp += tables.proto_evidence_[ActualProtoNum][i];
1014 }
1015
1016 temp /= ClassTemplate->ProtoLengths[ActualProtoNum];
1017
1018 if ((ProtoSet->Protos[ProtoNum]).Configs[0] & (*ConfigMask)) {
1019 DisplayIntProto(ClassTemplate, ActualProtoNum, temp / 255.0);
1020 }
1021 }
1022 }
1023}
1024
1025void IntegerMatcher::DisplayFeatureDebugInfo(INT_CLASS_STRUCT *ClassTemplate, BIT_VECTOR ProtoMask,
1026 BIT_VECTOR ConfigMask, int16_t NumFeatures,
1027 const INT_FEATURE_STRUCT *Features,
1028 int AdaptFeatureThreshold, int Debug,
1029 bool SeparateDebugWindows) {
1030 auto *tables = new ScratchEvidence();
1031
1032 tables->Clear(ClassTemplate);
1033
1035 if (SeparateDebugWindows) {
1038 }
1039
1040 for (int Feature = 0; Feature < NumFeatures; Feature++) {
1041 UpdateTablesForFeature(ClassTemplate, ProtoMask, ConfigMask, Feature, &Features[Feature],
1042 tables, 0);
1043
1044 /* Find Best Evidence for Current Feature */
1045 int best = 0;
1046 assert(ClassTemplate->NumConfigs < MAX_NUM_CONFIGS);
1047 for (int i = 0; i < MAX_NUM_CONFIGS && i < ClassTemplate->NumConfigs; i++) {
1048 if (tables->feature_evidence_[i] > best) {
1049 best = tables->feature_evidence_[i];
1050 }
1051 }
1052
1053 /* Update display for current feature */
1054 if (ClipMatchEvidenceOn(Debug)) {
1055 if (best < AdaptFeatureThreshold) {
1056 DisplayIntFeature(&Features[Feature], 0.0);
1057 } else {
1058 DisplayIntFeature(&Features[Feature], 1.0);
1059 }
1060 } else {
1061 DisplayIntFeature(&Features[Feature], best / 255.0);
1062 }
1063 }
1064
1065 delete tables;
1066}
1067#endif
1068
1073 int *IntPointer;
1074 uint32_t ConfigWord;
1075 int ProtoSetIndex;
1076 uint16_t ProtoNum;
1077 PROTO_SET_STRUCT *ProtoSet;
1078 int NumProtos;
1079 uint16_t ActualProtoNum;
1080
1081 NumProtos = ClassTemplate->NumProtos;
1082
1083 for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets; ProtoSetIndex++) {
1084 ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex];
1085 ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET);
1086 for (ProtoNum = 0; ((ProtoNum < PROTOS_PER_PROTO_SET) && (ActualProtoNum < NumProtos));
1087 ProtoNum++, ActualProtoNum++) {
1088 int temp = 0;
1089 for (uint8_t i = 0; i < MAX_PROTO_INDEX && i < ClassTemplate->ProtoLengths[ActualProtoNum];
1090 i++) {
1091 temp += proto_evidence_[ActualProtoNum][i];
1092 }
1093
1094 ConfigWord = ProtoSet->Protos[ProtoNum].Configs[0];
1095 ConfigWord &= *ConfigMask;
1096 IntPointer = sum_feature_evidence_;
1097 while (ConfigWord) {
1098 if (ConfigWord & 1) {
1099 *IntPointer += temp;
1100 }
1101 IntPointer++;
1102 ConfigWord >>= 1;
1103 }
1104 }
1105 }
1106}
1107
1112void ScratchEvidence::NormalizeSums(INT_CLASS_STRUCT *ClassTemplate, int16_t NumFeatures) {
1113 // ClassTemplate->NumConfigs can become larger than MAX_NUM_CONFIGS.
1114 for (int i = 0; i < MAX_NUM_CONFIGS && i < ClassTemplate->NumConfigs; i++) {
1116 (sum_feature_evidence_[i] << 8) / (NumFeatures + ClassTemplate->ConfigLengths[i]);
1117 }
1118}
1119
1125int IntegerMatcher::FindBestMatch(INT_CLASS_STRUCT *class_template, const ScratchEvidence &tables,
1126 UnicharRating *result) {
1127 int best_match = 0;
1128 result->config = 0;
1129 result->fonts.clear();
1130 result->fonts.reserve(class_template->NumConfigs);
1131
1132 // Find best match.
1133 // ClassTemplate->NumConfigs can become larger than MAX_NUM_CONFIGS.
1134 for (int c = 0; c < MAX_NUM_CONFIGS && c < class_template->NumConfigs; ++c) {
1135 int rating = tables.sum_feature_evidence_[c];
1136 if (*classify_debug_level_ > 2) {
1137 tprintf("Config %d, rating=%d\n", c, rating);
1138 }
1139 if (rating > best_match) {
1140 result->config = c;
1141 best_match = rating;
1142 }
1143 result->fonts.emplace_back(c, rating);
1144 }
1145
1146 // Compute confidence on a Probability scale.
1147 result->rating = best_match / 65536.0f;
1148
1149 return best_match;
1150}
1151
1156float IntegerMatcher::ApplyCNCorrection(float rating, int blob_length, int normalization_factor,
1157 int matcher_multiplier) {
1158 int divisor = blob_length + matcher_multiplier;
1159 return divisor == 0
1160 ? 1.0f
1161 : (rating * blob_length + matcher_multiplier * normalization_factor / 256.0f) /
1162 divisor;
1163}
1164
1165} // namespace tesseract
uint32_t * BIT_VECTOR
Definition: bitvec.h:28
#define MatchDebuggingOn(D)
Definition: intproto.h:172
#define PrintFeatureMatchesOn(D)
Definition: intproto.h:176
#define MAX_PROTO_INDEX
Definition: intproto.h:44
#define PrintMatchSummaryOn(D)
Definition: intproto.h:173
#define MAX_NUM_CONFIGS
Definition: intproto.h:47
#define BITS_PER_WERD
Definition: intproto.h:45
#define CLASS_PRUNER_CLASS_MASK
Definition: intproto.h:56
#define DisplayFeatureMatchesOn(D)
Definition: intproto.h:174
#define DisplayProtoMatchesOn(D)
Definition: intproto.h:175
#define NUM_CP_BUCKETS
Definition: intproto.h:53
#define WERDS_PER_CP_VECTOR
Definition: intproto.h:61
#define PROTOS_PER_PROTO_SET
Definition: intproto.h:49
#define ClipMatchEvidenceOn(D)
Definition: intproto.h:178
#define NUM_PP_BUCKETS
Definition: intproto.h:52
#define NUM_BITS_PER_CLASS
Definition: intproto.h:55
#define PrintProtoMatchesOn(D)
Definition: intproto.h:177
#define SE_TABLE_SIZE
Definition: intmatcher.h:47
#define SE_TABLE_BITS
Definition: intmatcher.h:46
const double y
void DisplayIntFeature(const INT_FEATURE_STRUCT *Feature, float Evidence)
Definition: intproto.cpp:543
void tprintf(const char *format,...)
Definition: tprintf.cpp:41
void InitIntMatchWindowIfReqd()
Definition: intproto.cpp:1587
void InitFeatureDisplayWindowIfReqd()
Definition: intproto.cpp:1614
int RoundUp(int n, int block_size)
Definition: helpers.h:99
T ClipToRange(const T &x, const T &lower_bound, const T &upper_bound)
Definition: helpers.h:105
int16_t PROTO_ID
Definition: matchdefs.h:40
void DisplayIntProto(INT_CLASS_STRUCT *Class, PROTO_ID ProtoId, float Evidence)
Definition: intproto.cpp:561
void InitProtoDisplayWindowIfReqd()
Definition: intproto.cpp:1604
INT_FEATURE_STRUCT INT_FEATURE_ARRAY[MAX_NUM_INT_FEATURES]
Definition: intproto.h:137
uint8_t FEATURE_ID
Definition: matchdefs.h:46
UNICHARSET unicharset
Definition: ccutil.h:61
const CHAR_FRAGMENT * get_fragment(UNICHAR_ID unichar_id) const
Definition: unicharset.h:768
bool get_enabled(UNICHAR_ID unichar_id) const
Definition: unicharset.h:911
int PruneClasses(const INT_TEMPLATES_STRUCT *int_templates, int num_features, int keep_this, const INT_FEATURE_STRUCT *features, const uint8_t *normalization_factors, const uint16_t *expected_num_features, std::vector< CP_RESULT_STRUCT > *results)
Definition: intmatcher.cpp:427
ShapeTable * shape_table_
Definition: classify.h:451
std::string ClassIDToDebugStr(const INT_TEMPLATES_STRUCT *templates, int class_id, int config_id) const
void SummarizeResult(const Classify &classify, const INT_TEMPLATES_STRUCT *int_templates, const uint16_t *expected_num_features, int norm_multiplier, const uint8_t *normalization_factors) const
Definition: intmatcher.cpp:357
void AdjustForExpectedNumFeatures(const uint16_t *expected_num_features, int cutoff_strength)
Definition: intmatcher.cpp:235
void NormalizeForXheight(int norm_multiplier, const uint8_t *normalization_factors)
Definition: intmatcher.cpp:270
void DisableFragments(const UNICHARSET &unicharset)
Definition: intmatcher.cpp:256
void ComputeScores(const INT_TEMPLATES_STRUCT *int_templates, int num_features, const INT_FEATURE_STRUCT *features)
Definition: intmatcher.cpp:165
ClassPruner(int max_classes)
Definition: intmatcher.cpp:134
void PruneAndSort(int pruning_factor, int keep_this, bool max_of_non_fragments, const UNICHARSET &unicharset)
Definition: intmatcher.cpp:287
int SetupResults(std::vector< CP_RESULT_STRUCT > *results) const
Definition: intmatcher.cpp:374
void DebugMatch(const Classify &classify, const INT_TEMPLATES_STRUCT *int_templates, const INT_FEATURE_STRUCT *features) const
Definition: intmatcher.cpp:324
void DisableDisabledClasses(const UNICHARSET &unicharset)
Definition: intmatcher.cpp:247
void NormalizeSums(INT_CLASS_STRUCT *ClassTemplate, int16_t NumFeatures)
void UpdateSumOfProtoEvidences(INT_CLASS_STRUCT *ClassTemplate, BIT_VECTOR ConfigMask)
void ClearFeatureEvidence(const INT_CLASS_STRUCT *class_template)
Definition: intmatcher.cpp:702
uint8_t feature_evidence_[MAX_NUM_CONFIGS]
Definition: intmatcher.h:50
uint8_t proto_evidence_[MAX_NUM_PROTOS][MAX_PROTO_INDEX]
Definition: intmatcher.h:52
void Clear(const INT_CLASS_STRUCT *class_template)
Definition: intmatcher.cpp:697
int sum_feature_evidence_[MAX_NUM_CONFIGS]
Definition: intmatcher.h:51
static const int kIntThetaFudge
Definition: intmatcher.h:63
void Match(INT_CLASS_STRUCT *ClassTemplate, BIT_VECTOR ProtoMask, BIT_VECTOR ConfigMask, int16_t NumFeatures, const INT_FEATURE_STRUCT *Features, tesseract::UnicharRating *Result, int AdaptFeatureThreshold, int Debug, bool SeparateDebugWindows)
Definition: intmatcher.cpp:482
static const int kEvidenceTableBits
Definition: intmatcher.h:65
int FindBadFeatures(INT_CLASS_STRUCT *ClassTemplate, BIT_VECTOR ProtoMask, BIT_VECTOR ConfigMask, int16_t NumFeatures, INT_FEATURE_ARRAY Features, FEATURE_ID *FeatureArray, int AdaptFeatureThreshold, int Debug)
Definition: intmatcher.cpp:619
static const float kSEExponentialMultiplier
Definition: intmatcher.h:69
float ApplyCNCorrection(float rating, int blob_length, int normalization_factor, int matcher_multiplier)
int FindGoodProtos(INT_CLASS_STRUCT *ClassTemplate, BIT_VECTOR ProtoMask, BIT_VECTOR ConfigMask, int16_t NumFeatures, INT_FEATURE_ARRAY Features, PROTO_ID *ProtoArray, int AdaptProtoThreshold, int Debug)
Definition: intmatcher.cpp:555
static const float kSimilarityCenter
Definition: intmatcher.h:71
static const int kIntEvidenceTruncBits
Definition: intmatcher.h:67
IntegerMatcher(tesseract::IntParam *classify_debug_level)
Definition: intmatcher.cpp:668
uint32_t p[NUM_CP_BUCKETS][NUM_CP_BUCKETS][NUM_CP_BUCKETS][WERDS_PER_CP_VECTOR]
Definition: intproto.h:73
uint32_t Configs[WERDS_PER_CONFIG_VEC]
Definition: intproto.h:81
INT_PROTO_STRUCT Protos[PROTOS_PER_PROTO_SET]
Definition: intproto.h:88
PROTO_SET_STRUCT * ProtoSets[MAX_NUM_PROTO_SETS]
Definition: intproto.h:100
uint16_t ConfigLengths[MAX_NUM_CONFIGS]
Definition: intproto.h:102
std::vector< uint8_t > ProtoLengths
Definition: intproto.h:101
CLASS_PRUNER_STRUCT * ClassPruners[MAX_NUM_CLASS_PRUNERS]
Definition: intproto.h:112
std::vector< ScoredFont > fonts
Definition: shapetable.h:71