tesseract v5.3.3.20231005
trainingsample.cpp
Go to the documentation of this file.
1// Copyright 2010 Google Inc. All Rights Reserved.
2// Author: rays@google.com (Ray Smith)
3//
4// Licensed under the Apache License, Version 2.0 (the "License");
5// you may not use this file except in compliance with the License.
6// You may obtain a copy of the License at
7// http://www.apache.org/licenses/LICENSE-2.0
8// Unless required by applicable law or agreed to in writing, software
9// distributed under the License is distributed on an "AS IS" BASIS,
10// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11// See the License for the specific language governing permissions and
12// limitations under the License.
13//
15
16#define _USE_MATH_DEFINES // for M_PI
17// Include automatically generated configuration file if running autoconf.
18#ifdef HAVE_CONFIG_H
19# include "config_auto.h"
20#endif
21
22#include "trainingsample.h"
23
24#include "helpers.h"
25#include "intfeaturespace.h"
26#include "normfeat.h"
27#include "shapetable.h"
28
29#include <allheaders.h>
30
31#include <cmath> // for M_PI
32
33namespace tesseract {
34
35// Center of randomizing operations.
36const int kRandomizingCenter = 128;
37
38// Randomizing factors.
39const int TrainingSample::kYShiftValues[kSampleYShiftSize] = {6, 3, -3, -6, 0};
40const double TrainingSample::kScaleValues[kSampleScaleSize] = {1.0625, 0.9375, 1.0};
41
43 delete[] features_;
44 delete[] micro_features_;
45}
46
47// WARNING! Serialize/DeSerialize do not save/restore the "cache" data
48// members, which is mostly the mapped features, and the weight.
49// It is assumed these can all be reconstructed from what is saved.
50// Writes to the given file. Returns false in case of error.
51bool TrainingSample::Serialize(FILE *fp) const {
52 if (fwrite(&class_id_, sizeof(class_id_), 1, fp) != 1) {
53 return false;
54 }
55 if (fwrite(&font_id_, sizeof(font_id_), 1, fp) != 1) {
56 return false;
57 }
58 if (fwrite(&page_num_, sizeof(page_num_), 1, fp) != 1) {
59 return false;
60 }
61 if (!bounding_box_.Serialize(fp)) {
62 return false;
63 }
64 if (fwrite(&num_features_, sizeof(num_features_), 1, fp) != 1) {
65 return false;
66 }
67 if (fwrite(&num_micro_features_, sizeof(num_micro_features_), 1, fp) != 1) {
68 return false;
69 }
70 if (fwrite(&outline_length_, sizeof(outline_length_), 1, fp) != 1) {
71 return false;
72 }
73 if (fwrite(features_, sizeof(*features_), num_features_, fp) != num_features_) {
74 return false;
75 }
76 if (fwrite(micro_features_, sizeof(*micro_features_), num_micro_features_, fp) !=
77 num_micro_features_) {
78 return false;
79 }
80 if (fwrite(cn_feature_, sizeof(*cn_feature_), kNumCNParams, fp) != kNumCNParams) {
81 return false;
82 }
83 if (fwrite(geo_feature_, sizeof(*geo_feature_), GeoCount, fp) != GeoCount) {
84 return false;
85 }
86 return true;
87}
88
89// Creates from the given file. Returns nullptr in case of error.
90// If swap is true, assumes a big/little-endian swap is needed.
92 auto *sample = new TrainingSample;
93 if (sample->DeSerialize(swap, fp)) {
94 return sample;
95 }
96 delete sample;
97 return nullptr;
98}
99
100// Reads from the given file. Returns false in case of error.
101// If swap is true, assumes a big/little-endian swap is needed.
102bool TrainingSample::DeSerialize(bool swap, FILE *fp) {
103 if (fread(&class_id_, sizeof(class_id_), 1, fp) != 1) {
104 return false;
105 }
106 if (fread(&font_id_, sizeof(font_id_), 1, fp) != 1) {
107 return false;
108 }
109 if (fread(&page_num_, sizeof(page_num_), 1, fp) != 1) {
110 return false;
111 }
112 if (!bounding_box_.DeSerialize(swap, fp)) {
113 return false;
114 }
115 if (fread(&num_features_, sizeof(num_features_), 1, fp) != 1) {
116 return false;
117 }
118 if (fread(&num_micro_features_, sizeof(num_micro_features_), 1, fp) != 1) {
119 return false;
120 }
121 if (fread(&outline_length_, sizeof(outline_length_), 1, fp) != 1) {
122 return false;
123 }
124 if (swap) {
125 ReverseN(&class_id_, sizeof(class_id_));
126 ReverseN(&num_features_, sizeof(num_features_));
127 ReverseN(&num_micro_features_, sizeof(num_micro_features_));
128 ReverseN(&outline_length_, sizeof(outline_length_));
129 }
130 // Arbitrarily limit the number of elements to protect against bad data.
131 if (num_features_ > UINT16_MAX) {
132 return false;
133 }
134 if (num_micro_features_ > UINT16_MAX) {
135 return false;
136 }
137 delete[] features_;
138 features_ = new INT_FEATURE_STRUCT[num_features_];
139 if (fread(features_, sizeof(*features_), num_features_, fp) != num_features_) {
140 return false;
141 }
142 delete[] micro_features_;
143 micro_features_ = new MicroFeature[num_micro_features_];
144 if (fread(micro_features_, sizeof(*micro_features_), num_micro_features_, fp) !=
145 num_micro_features_) {
146 return false;
147 }
148 if (fread(cn_feature_, sizeof(*cn_feature_), kNumCNParams, fp) != kNumCNParams) {
149 return false;
150 }
151 if (fread(geo_feature_, sizeof(*geo_feature_), GeoCount, fp) != GeoCount) {
152 return false;
153 }
154 return true;
155}
156
157// Saves the given features into a TrainingSample.
159 const TBOX &bounding_box,
160 const INT_FEATURE_STRUCT *features,
161 int num_features) {
162 auto *sample = new TrainingSample;
163 sample->num_features_ = num_features;
164 sample->features_ = new INT_FEATURE_STRUCT[num_features];
165 sample->outline_length_ = fx_info.Length;
166 memcpy(sample->features_, features, num_features * sizeof(features[0]));
167 sample->geo_feature_[GeoBottom] = bounding_box.bottom();
168 sample->geo_feature_[GeoTop] = bounding_box.top();
169 sample->geo_feature_[GeoWidth] = bounding_box.width();
170
171 // Generate the cn_feature_ from the fx_info.
172 sample->cn_feature_[CharNormY] = MF_SCALE_FACTOR * (fx_info.Ymean - kBlnBaselineOffset);
173 sample->cn_feature_[CharNormLength] = MF_SCALE_FACTOR * fx_info.Length / LENGTH_COMPRESSION;
174 sample->cn_feature_[CharNormRx] = MF_SCALE_FACTOR * fx_info.Rx;
175 sample->cn_feature_[CharNormRy] = MF_SCALE_FACTOR * fx_info.Ry;
176
177 sample->features_are_indexed_ = false;
178 sample->features_are_mapped_ = false;
179 return sample;
180}
181
182// Returns the cn_feature as a FEATURE_STRUCT* needed by cntraining.
184 auto feature = new FEATURE_STRUCT(&CharNormDesc);
185 for (int i = 0; i < kNumCNParams; ++i) {
186 feature->Params[i] = cn_feature_[i];
187 }
188 return feature;
189}
190
191// Constructs and returns a copy randomized by the method given by
192// the randomizer index. If index is out of [0, kSampleRandomSize) then
193// an exact copy is returned.
195 TrainingSample *sample = Copy();
196 if (index >= 0 && index < kSampleRandomSize) {
197 ++index; // Remove the first combination.
198 const int yshift = kYShiftValues[index / kSampleScaleSize];
199 double scaling = kScaleValues[index % kSampleScaleSize];
200 for (uint32_t i = 0; i < num_features_; ++i) {
201 double result = (features_[i].X - kRandomizingCenter) * scaling;
202 result += kRandomizingCenter;
203 sample->features_[i].X = ClipToRange<int>(result + 0.5, 0, UINT8_MAX);
204 result = (features_[i].Y - kRandomizingCenter) * scaling;
205 result += kRandomizingCenter + yshift;
206 sample->features_[i].Y = ClipToRange<int>(result + 0.5, 0, UINT8_MAX);
207 }
208 }
209 return sample;
210}
211
212// Constructs and returns an exact copy.
214 auto *sample = new TrainingSample;
215 sample->class_id_ = class_id_;
216 sample->font_id_ = font_id_;
217 sample->weight_ = weight_;
218 sample->sample_index_ = sample_index_;
219 sample->num_features_ = num_features_;
220 if (num_features_ > 0) {
221 sample->features_ = new INT_FEATURE_STRUCT[num_features_];
222 memcpy(sample->features_, features_, num_features_ * sizeof(features_[0]));
223 }
224 sample->num_micro_features_ = num_micro_features_;
225 if (num_micro_features_ > 0) {
226 sample->micro_features_ = new MicroFeature[num_micro_features_];
227 memcpy(sample->micro_features_, micro_features_,
228 num_micro_features_ * sizeof(micro_features_[0]));
229 }
230 memcpy(sample->cn_feature_, cn_feature_, sizeof(*cn_feature_) * kNumCNParams);
231 memcpy(sample->geo_feature_, geo_feature_, sizeof(*geo_feature_) * GeoCount);
232 return sample;
233}
234
235// Extracts the needed information from the CHAR_DESC_STRUCT.
236void TrainingSample::ExtractCharDesc(int int_feature_type, int micro_type, int cn_type,
237 int geo_type, CHAR_DESC_STRUCT *char_desc) {
238 // Extract the INT features.
239 delete[] features_;
240 FEATURE_SET_STRUCT *char_features = char_desc->FeatureSets[int_feature_type];
241 if (char_features == nullptr) {
242 tprintf("Error: no features to train on of type %s\n", kIntFeatureType);
243 num_features_ = 0;
244 features_ = nullptr;
245 } else {
246 num_features_ = char_features->NumFeatures;
247 features_ = new INT_FEATURE_STRUCT[num_features_];
248 for (uint32_t f = 0; f < num_features_; ++f) {
249 features_[f].X = static_cast<uint8_t>(char_features->Features[f]->Params[IntX]);
250 features_[f].Y = static_cast<uint8_t>(char_features->Features[f]->Params[IntY]);
251 features_[f].Theta = static_cast<uint8_t>(char_features->Features[f]->Params[IntDir]);
252 features_[f].CP_misses = 0;
253 }
254 }
255 // Extract the Micro features.
256 delete[] micro_features_;
257 char_features = char_desc->FeatureSets[micro_type];
258 if (char_features == nullptr) {
259 tprintf("Error: no features to train on of type %s\n", kMicroFeatureType);
260 num_micro_features_ = 0;
261 micro_features_ = nullptr;
262 } else {
263 num_micro_features_ = char_features->NumFeatures;
264 micro_features_ = new MicroFeature[num_micro_features_];
265 for (uint32_t f = 0; f < num_micro_features_; ++f) {
266 for (int d = 0; d < (int)MicroFeatureParameter::MFCount; ++d) {
267 micro_features_[f][d] = char_features->Features[f]->Params[d];
268 }
269 }
270 }
271 // Extract the CN feature.
272 char_features = char_desc->FeatureSets[cn_type];
273 if (char_features == nullptr) {
274 tprintf("Error: no CN feature to train on.\n");
275 } else {
276 ASSERT_HOST(char_features->NumFeatures == 1);
277 cn_feature_[CharNormY] = char_features->Features[0]->Params[CharNormY];
278 cn_feature_[CharNormLength] = char_features->Features[0]->Params[CharNormLength];
279 cn_feature_[CharNormRx] = char_features->Features[0]->Params[CharNormRx];
280 cn_feature_[CharNormRy] = char_features->Features[0]->Params[CharNormRy];
281 }
282 // Extract the Geo feature.
283 char_features = char_desc->FeatureSets[geo_type];
284 if (char_features == nullptr) {
285 tprintf("Error: no Geo feature to train on.\n");
286 } else {
287 ASSERT_HOST(char_features->NumFeatures == 1);
288 geo_feature_[GeoBottom] = char_features->Features[0]->Params[GeoBottom];
289 geo_feature_[GeoTop] = char_features->Features[0]->Params[GeoTop];
290 geo_feature_[GeoWidth] = char_features->Features[0]->Params[GeoWidth];
291 }
292 features_are_indexed_ = false;
293 features_are_mapped_ = false;
294}
295
296// Sets the mapped_features_ from the features_ using the provided
297// feature_space to the indexed versions of the features.
299 std::vector<int> indexed_features;
300 feature_space.IndexAndSortFeatures(features_, num_features_, &mapped_features_);
302 features_are_mapped_ = false;
303}
304
305// Returns a pix representing the sample. (Int features only.)
307 Image pix = pixCreate(kIntFeatureExtent, kIntFeatureExtent, 1);
308 for (uint32_t f = 0; f < num_features_; ++f) {
309 int start_x = features_[f].X;
310 int start_y = kIntFeatureExtent - features_[f].Y;
311 double dx = cos((features_[f].Theta / 256.0) * 2.0 * M_PI - M_PI);
312 double dy = -sin((features_[f].Theta / 256.0) * 2.0 * M_PI - M_PI);
313 for (int i = 0; i <= 5; ++i) {
314 int x = static_cast<int>(start_x + dx * i);
315 int y = static_cast<int>(start_y + dy * i);
316 if (x >= 0 && x < 256 && y >= 0 && y < 256) {
317 pixSetPixel(pix, x, y, 1);
318 }
319 }
320 }
321 if (unicharset != nullptr) {
322 pixSetText(pix, unicharset->id_to_unichar(class_id_));
323 }
324 return pix;
325}
326
327#ifndef GRAPHICS_DISABLED
328
329// Displays the features in the given window with the given color.
331 for (uint32_t f = 0; f < num_features_; ++f) {
332 RenderIntFeature(window, &features_[f], color);
333 }
334}
335
336#endif // !GRAPHICS_DISABLED
337
338// Returns a pix of the original sample image. The pix is padded all round
339// by padding wherever possible.
340// The returned Pix must be pixDestroyed after use.
341// If the input page_pix is nullptr, nullptr is returned.
342Image TrainingSample::GetSamplePix(int padding, Image page_pix) const {
343 if (page_pix == nullptr) {
344 return nullptr;
345 }
346 int page_width = pixGetWidth(page_pix);
347 int page_height = pixGetHeight(page_pix);
348 TBOX padded_box = bounding_box();
349 padded_box.pad(padding, padding);
350 // Clip the padded_box to the limits of the page
351 TBOX page_box(0, 0, page_width, page_height);
352 padded_box &= page_box;
353 Box *box =
354 boxCreate(page_box.left(), page_height - page_box.top(), page_box.width(), page_box.height());
355 Image sample_pix = pixClipRectangle(page_pix, box, nullptr);
356 boxDestroy(&box);
357 return sample_pix;
358}
359
360} // namespace tesseract
#define ASSERT_HOST(x)
Definition: errcode.h:54
#define LENGTH_COMPRESSION
Definition: normfeat.h:26
const int kIntFeatureExtent
const double y
void ReverseN(void *ptr, int num_bytes)
Definition: helpers.h:184
void tprintf(const char *format,...)
Definition: tprintf.cpp:41
void RenderIntFeature(ScrollView *window, const INT_FEATURE_STRUCT *Feature, ScrollView::Color color)
Definition: intproto.cpp:1500
const float MF_SCALE_FACTOR
Definition: mfoutline.h:61
const char *const kIntFeatureType
Definition: featdefs.cpp:35
@ GeoCount
Definition: picofeat.h:40
@ GeoTop
Definition: picofeat.h:37
@ GeoWidth
Definition: picofeat.h:38
@ GeoBottom
Definition: picofeat.h:36
const int kRandomizingCenter
@ CharNormLength
Definition: normfeat.h:30
@ CharNormRy
Definition: normfeat.h:30
@ CharNormY
Definition: normfeat.h:30
@ CharNormRx
Definition: normfeat.h:30
std::array< float,(int) MicroFeatureParameter::MFCount > MicroFeature
Definition: mfdefs.h:36
@ IntDir
Definition: picofeat.h:31
const FEATURE_DESC_STRUCT CharNormDesc
const char *const kMicroFeatureType
Definition: featdefs.cpp:33
const int kBlnBaselineOffset
Definition: normalis.h:34
TDimension left() const
Definition: rect.h:82
TDimension height() const
Definition: rect.h:118
TDimension width() const
Definition: rect.h:126
bool Serialize(FILE *fp) const
Definition: rect.cpp:187
bool DeSerialize(bool swap, FILE *fp)
Definition: rect.cpp:198
TDimension top() const
Definition: rect.h:68
TDimension bottom() const
Definition: rect.h:75
void pad(int xpad, int ypad)
Definition: rect.h:144
const char * id_to_unichar(UNICHAR_ID id) const
Definition: unicharset.cpp:279
std::array< FEATURE_SET_STRUCT *, NUM_FEATURE_TYPES > FeatureSets
Definition: featdefs.h:63
void IndexAndSortFeatures(const INT_FEATURE_STRUCT *features, int num_features, std::vector< int > *sorted_features) const
std::vector< FEATURE_STRUCT * > Features
Definition: ocrfeatures.h:85
bool DeSerialize(bool swap, FILE *fp)
static TrainingSample * CopyFromFeatures(const INT_FX_RESULT_STRUCT &fx_info, const TBOX &bounding_box, const INT_FEATURE_STRUCT *features, int num_features)
const INT_FEATURE_STRUCT * features() const
const TBOX & bounding_box() const
Image GetSamplePix(int padding, Image page_pix) const
TrainingSample * RandomizedCopy(int index) const
void DisplayFeatures(ScrollView::Color color, ScrollView *window) const
uint32_t num_features() const
FEATURE_STRUCT * GetCNFeature() const
void IndexFeatures(const IntFeatureSpace &feature_space)
const std::vector< int > & indexed_features() const
TrainingSample * Copy() const
Image RenderToPix(const UNICHARSET *unicharset) const
static TrainingSample * DeSerializeCreate(bool swap, FILE *fp)
std::vector< int > mapped_features_
bool Serialize(FILE *fp) const
void ExtractCharDesc(int feature_type, int micro_type, int cn_type, int geo_type, CHAR_DESC_STRUCT *char_desc)