tesseract v5.3.3.20231005
tesseract::TrainingSampleSet Class Reference

#include <trainingsampleset.h>

Public Member Functions

 TrainingSampleSet (const FontInfoTable &fontinfo_table)
 
 ~TrainingSampleSet ()
 
bool Serialize (FILE *fp) const
 
bool DeSerialize (bool swap, FILE *fp)
 
int num_samples () const
 
int num_raw_samples () const
 
int NumFonts () const
 
const UNICHARSETunicharset () const
 
int charsetsize () const
 
const FontInfoTablefontinfo_table () const
 
void LoadUnicharset (const char *filename)
 
int AddSample (const char *unichar, TrainingSample *sample)
 
void AddSample (int unichar_id, TrainingSample *sample)
 
int NumClassSamples (int font_id, int class_id, bool randomize) const
 
const TrainingSampleGetSample (int index) const
 
const TrainingSampleGetSample (int font_id, int class_id, int index) const
 
TrainingSampleMutableSample (int font_id, int class_id, int index)
 
std::string SampleToString (const TrainingSample &sample) const
 
const BitVectorGetCloudFeatures (int font_id, int class_id) const
 
const std::vector< int > & GetCanonicalFeatures (int font_id, int class_id) const
 
float UnicharDistance (const UnicharAndFonts &uf1, const UnicharAndFonts &uf2, bool matched_fonts, const IntFeatureMap &feature_map)
 
float ClusterDistance (int font_id1, int class_id1, int font_id2, int class_id2, const IntFeatureMap &feature_map)
 
float ComputeClusterDistance (int font_id1, int class_id1, int font_id2, int class_id2, const IntFeatureMap &feature_map) const
 
int ReliablySeparable (int font_id1, int class_id1, int font_id2, int class_id2, const IntFeatureMap &feature_map, bool thorough) const
 
int GlobalSampleIndex (int font_id, int class_id, int index) const
 
const TrainingSampleGetCanonicalSample (int font_id, int class_id) const
 
float GetCanonicalDist (int font_id, int class_id) const
 
TrainingSamplemutable_sample (int index)
 
TrainingSampleextract_sample (int index)
 
void IndexFeatures (const IntFeatureSpace &feature_space)
 
void KillSample (TrainingSample *sample)
 
void DeleteDeadSamples ()
 
void OrganizeByFontAndClass ()
 
void SetupFontIdMap ()
 
void ComputeCanonicalSamples (const IntFeatureMap &map, bool debug)
 
void ReplicateAndRandomizeSamples ()
 
void ComputeCanonicalFeatures ()
 
void ComputeCloudFeatures (int feature_space_size)
 
void AddAllFontsForClass (int class_id, Shape *shape) const
 
void DisplaySamplesWithFeature (int f_index, const Shape &shape, const IntFeatureSpace &feature_space, ScrollView::Color color, ScrollView *window) const
 

Detailed Description

Definition at line 41 of file trainingsampleset.h.

Constructor & Destructor Documentation

◆ TrainingSampleSet()

tesseract::TrainingSampleSet::TrainingSampleSet ( const FontInfoTable fontinfo_table)
explicit

Definition at line 86 of file trainingsampleset.cpp.

87 : num_raw_samples_(0)
88 , unicharset_size_(0)
89 , font_class_array_(nullptr)
90 , fontinfo_table_(font_table) {}

◆ ~TrainingSampleSet()

tesseract::TrainingSampleSet::~TrainingSampleSet ( )

Definition at line 92 of file trainingsampleset.cpp.

92 {
93 for (auto sample : samples_) {
94 delete sample;
95 }
96 delete font_class_array_;
97}

Member Function Documentation

◆ AddAllFontsForClass()

void tesseract::TrainingSampleSet::AddAllFontsForClass ( int  class_id,
Shape shape 
) const

Definition at line 781 of file trainingsampleset.cpp.

781 {
782 for (int f = 0; f < font_id_map_.CompactSize(); ++f) {
783 const int font_id = font_id_map_.CompactToSparse(f);
784 shape->AddToShape(class_id, font_id);
785 }
786}
int CompactSize() const
Definition: indexmapbidi.h:63
int CompactToSparse(int compact_index) const
Definition: indexmapbidi.h:55

◆ AddSample() [1/2]

int tesseract::TrainingSampleSet::AddSample ( const char *  unichar,
TrainingSample sample 
)

Definition at line 170 of file trainingsampleset.cpp.

170 {
171 if (!unicharset_.contains_unichar(unichar)) {
172 unicharset_.unichar_insert(unichar);
173 if (unicharset_.size() > MAX_NUM_CLASSES) {
174 tprintf(
175 "Error: Size of unicharset in TrainingSampleSet::AddSample is "
176 "greater than MAX_NUM_CLASSES\n");
177 return -1;
178 }
179 }
180 UNICHAR_ID char_id = unicharset_.unichar_to_id(unichar);
181 AddSample(char_id, sample);
182 return char_id;
183}
#define MAX_NUM_CLASSES
Definition: matchdefs.h:31
void tprintf(const char *format,...)
Definition: tprintf.cpp:41
int UNICHAR_ID
Definition: unichar.h:34
void unichar_insert(const char *const unichar_repr, OldUncleanUnichars old_style)
Definition: unicharset.cpp:654
bool contains_unichar(const char *const unichar_repr) const
Definition: unicharset.cpp:695
UNICHAR_ID unichar_to_id(const char *const unichar_repr) const
Definition: unicharset.cpp:186
size_t size() const
Definition: unicharset.h:355
int AddSample(const char *unichar, TrainingSample *sample)

◆ AddSample() [2/2]

void tesseract::TrainingSampleSet::AddSample ( int  unichar_id,
TrainingSample sample 
)

Definition at line 187 of file trainingsampleset.cpp.

187 {
188 sample->set_class_id(unichar_id);
189 samples_.push_back(sample);
190 num_raw_samples_ = samples_.size();
191 unicharset_size_ = unicharset_.size();
192}

◆ charsetsize()

int tesseract::TrainingSampleSet::charsetsize ( ) const
inline

Definition at line 65 of file trainingsampleset.h.

65 {
66 return unicharset_size_;
67 }

◆ ClusterDistance()

float tesseract::TrainingSampleSet::ClusterDistance ( int  font_id1,
int  class_id1,
int  font_id2,
int  class_id2,
const IntFeatureMap feature_map 
)

Definition at line 337 of file trainingsampleset.cpp.

338 {
339 ASSERT_HOST(font_class_array_ != nullptr);
340 int font_index1 = font_id_map_.SparseToCompact(font_id1);
341 int font_index2 = font_id_map_.SparseToCompact(font_id2);
342 if (font_index1 < 0 || font_index2 < 0) {
343 return 0.0f;
344 }
345 FontClassInfo &fc_info = (*font_class_array_)(font_index1, class_id1);
346 if (font_id1 == font_id2) {
347 // Special case cache for speed.
348 if (fc_info.unichar_distance_cache.empty()) {
349 fc_info.unichar_distance_cache.resize(unicharset_size_, -1.0f);
350 }
351 if (fc_info.unichar_distance_cache[class_id2] < 0) {
352 // Distance has to be calculated.
353 float result = ComputeClusterDistance(font_id1, class_id1, font_id2, class_id2, feature_map);
354 fc_info.unichar_distance_cache[class_id2] = result;
355 // Copy to the symmetric cache entry.
356 FontClassInfo &fc_info2 = (*font_class_array_)(font_index2, class_id2);
357 if (fc_info2.unichar_distance_cache.empty()) {
358 fc_info2.unichar_distance_cache.resize(unicharset_size_, -1.0f);
359 }
360 fc_info2.unichar_distance_cache[class_id1] = result;
361 }
362 return fc_info.unichar_distance_cache[class_id2];
363 } else if (class_id1 == class_id2) {
364 // Another special-case cache for equal class-id.
365 if (fc_info.font_distance_cache.empty()) {
366 fc_info.font_distance_cache.resize(font_id_map_.CompactSize(), -1.0f);
367 }
368 if (fc_info.font_distance_cache[font_index2] < 0) {
369 // Distance has to be calculated.
370 float result = ComputeClusterDistance(font_id1, class_id1, font_id2, class_id2, feature_map);
371 fc_info.font_distance_cache[font_index2] = result;
372 // Copy to the symmetric cache entry.
373 FontClassInfo &fc_info2 = (*font_class_array_)(font_index2, class_id2);
374 if (fc_info2.font_distance_cache.empty()) {
375 fc_info2.font_distance_cache.resize(font_id_map_.CompactSize(), -1.0f);
376 }
377 fc_info2.font_distance_cache[font_index1] = result;
378 }
379 return fc_info.font_distance_cache[font_index2];
380 }
381 // Both font and class are different. Linear search for class_id2/font_id2
382 // in what is a hopefully short list of distances.
383 size_t cache_index = 0;
384 while (cache_index < fc_info.distance_cache.size() &&
385 (fc_info.distance_cache[cache_index].unichar_id != class_id2 ||
386 fc_info.distance_cache[cache_index].font_id != font_id2)) {
387 ++cache_index;
388 }
389 if (cache_index == fc_info.distance_cache.size()) {
390 // Distance has to be calculated.
391 float result = ComputeClusterDistance(font_id1, class_id1, font_id2, class_id2, feature_map);
392 FontClassDistance fc_dist = {class_id2, font_id2, result};
393 fc_info.distance_cache.push_back(fc_dist);
394 // Copy to the symmetric cache entry. We know it isn't there already, as
395 // we always copy to the symmetric entry.
396 FontClassInfo &fc_info2 = (*font_class_array_)(font_index2, class_id2);
397 fc_dist.unichar_id = class_id1;
398 fc_dist.font_id = font_id1;
399 fc_info2.distance_cache.push_back(fc_dist);
400 }
401 return fc_info.distance_cache[cache_index].distance;
402}
#define ASSERT_HOST(x)
Definition: errcode.h:54
int SparseToCompact(int sparse_index) const override
Definition: indexmapbidi.h:140
float ComputeClusterDistance(int font_id1, int class_id1, int font_id2, int class_id2, const IntFeatureMap &feature_map) const

◆ ComputeCanonicalFeatures()

void tesseract::TrainingSampleSet::ComputeCanonicalFeatures ( )

Definition at line 738 of file trainingsampleset.cpp.

738 {
739 ASSERT_HOST(font_class_array_ != nullptr);
740 const int font_size = font_id_map_.CompactSize();
741 for (int font_index = 0; font_index < font_size; ++font_index) {
742 const int font_id = font_id_map_.CompactToSparse(font_index);
743 for (int c = 0; c < unicharset_size_; ++c) {
744 int num_samples = NumClassSamples(font_id, c, false);
745 if (num_samples == 0) {
746 continue;
747 }
748 const TrainingSample *sample = GetCanonicalSample(font_id, c);
749 FontClassInfo &fcinfo = (*font_class_array_)(font_index, c);
750 fcinfo.canonical_features = sample->indexed_features();
751 }
752 }
753}
const TrainingSample * GetCanonicalSample(int font_id, int class_id) const
int NumClassSamples(int font_id, int class_id, bool randomize) const

◆ ComputeCanonicalSamples()

void tesseract::TrainingSampleSet::ComputeCanonicalSamples ( const IntFeatureMap map,
bool  debug 
)

Definition at line 611 of file trainingsampleset.cpp.

611 {
612 ASSERT_HOST(font_class_array_ != nullptr);
613 IntFeatureDist f_table;
614 if (debug) {
615 tprintf("feature table size %d\n", map.sparse_size());
616 }
617 f_table.Init(&map);
618 int worst_s1 = 0;
619 int worst_s2 = 0;
620 double global_worst_dist = 0.0;
621 // Compute distances independently for each font and char index.
622 int font_size = font_id_map_.CompactSize();
623 for (int font_index = 0; font_index < font_size; ++font_index) {
624 int font_id = font_id_map_.CompactToSparse(font_index);
625 for (int c = 0; c < unicharset_size_; ++c) {
626 int samples_found = 0;
627 FontClassInfo &fcinfo = (*font_class_array_)(font_index, c);
628 if (fcinfo.samples.empty() || (kTestChar >= 0 && c != kTestChar)) {
629 fcinfo.canonical_sample = -1;
630 fcinfo.canonical_dist = 0.0f;
631 if (debug) {
632 tprintf("Skipping class %d\n", c);
633 }
634 continue;
635 }
636 // The canonical sample will be the one with the min_max_dist, which
637 // is the sample with the lowest maximum distance to all other samples.
638 double min_max_dist = 2.0;
639 // We keep track of the farthest apart pair (max_s1, max_s2) which
640 // are max_max_dist apart, so we can see how bad the variability is.
641 double max_max_dist = 0.0;
642 int max_s1 = 0;
643 int max_s2 = 0;
644 fcinfo.canonical_sample = fcinfo.samples[0];
645 fcinfo.canonical_dist = 0.0f;
646 for (auto s1 : fcinfo.samples) {
647 const std::vector<int> &features1 = samples_[s1]->indexed_features();
648 f_table.Set(features1, features1.size(), true);
649 double max_dist = 0.0;
650 // Run the full squared-order search for similar samples. It is still
651 // reasonably fast because f_table.FeatureDistance is fast, but we
652 // may have to reconsider if we start playing with too many samples
653 // of a single char/font.
654 for (int s2 : fcinfo.samples) {
655 if (samples_[s2]->class_id() != c || samples_[s2]->font_id() != font_id || s2 == s1) {
656 continue;
657 }
658 std::vector<int> features2 = samples_[s2]->indexed_features();
659 double dist = f_table.FeatureDistance(features2);
660 if (dist > max_dist) {
661 max_dist = dist;
662 if (dist > max_max_dist) {
663 max_max_dist = dist;
664 max_s1 = s1;
665 max_s2 = s2;
666 }
667 }
668 }
669 // Using Set(..., false) is far faster than re initializing, due to
670 // the sparseness of the feature space.
671 f_table.Set(features1, features1.size(), false);
672 samples_[s1]->set_max_dist(max_dist);
673 ++samples_found;
674 if (max_dist < min_max_dist) {
675 fcinfo.canonical_sample = s1;
676 fcinfo.canonical_dist = max_dist;
677 }
678 UpdateRange(max_dist, &min_max_dist, &max_max_dist);
679 }
680 if (max_max_dist > global_worst_dist) {
681 // Keep a record of the worst pair over all characters/fonts too.
682 global_worst_dist = max_max_dist;
683 worst_s1 = max_s1;
684 worst_s2 = max_s2;
685 }
686 if (debug) {
687 tprintf(
688 "Found %d samples of class %d=%s, font %d, "
689 "dist range [%g, %g], worst pair= %s, %s\n",
690 samples_found, c, unicharset_.debug_str(c).c_str(), font_index, min_max_dist,
691 max_max_dist, SampleToString(*samples_[max_s1]).c_str(),
692 SampleToString(*samples_[max_s2]).c_str());
693 }
694 }
695 }
696 if (debug) {
697 tprintf("Global worst dist = %g, between sample %d and %d\n", global_worst_dist, worst_s1,
698 worst_s2);
699 }
700}
void UpdateRange(const T1 &x, T2 *lower_bound, T2 *upper_bound)
Definition: helpers.h:117
const int kTestChar
std::string debug_str(UNICHAR_ID id) const
Definition: unicharset.cpp:331
std::string SampleToString(const TrainingSample &sample) const

◆ ComputeCloudFeatures()

void tesseract::TrainingSampleSet::ComputeCloudFeatures ( int  feature_space_size)

Definition at line 757 of file trainingsampleset.cpp.

757 {
758 ASSERT_HOST(font_class_array_ != nullptr);
759 int font_size = font_id_map_.CompactSize();
760 for (int font_index = 0; font_index < font_size; ++font_index) {
761 int font_id = font_id_map_.CompactToSparse(font_index);
762 for (int c = 0; c < unicharset_size_; ++c) {
763 int num_samples = NumClassSamples(font_id, c, false);
764 if (num_samples == 0) {
765 continue;
766 }
767 FontClassInfo &fcinfo = (*font_class_array_)(font_index, c);
768 fcinfo.cloud_features.Init(feature_space_size);
769 for (int s = 0; s < num_samples; ++s) {
770 const TrainingSample *sample = GetSample(font_id, c, s);
771 const std::vector<int> &sample_features = sample->indexed_features();
772 for (int sample_feature : sample_features) {
773 fcinfo.cloud_features.SetBit(sample_feature);
774 }
775 }
776 }
777 }
778}
const TrainingSample * GetSample(int index) const

◆ ComputeClusterDistance()

float tesseract::TrainingSampleSet::ComputeClusterDistance ( int  font_id1,
int  class_id1,
int  font_id2,
int  class_id2,
const IntFeatureMap feature_map 
) const

Definition at line 405 of file trainingsampleset.cpp.

407 {
408 int dist = ReliablySeparable(font_id1, class_id1, font_id2, class_id2, feature_map, false);
409 dist += ReliablySeparable(font_id2, class_id2, font_id1, class_id1, feature_map, false);
410 int denominator = GetCanonicalFeatures(font_id1, class_id1).size();
411 denominator += GetCanonicalFeatures(font_id2, class_id2).size();
412 return static_cast<float>(dist) / denominator;
413}
const std::vector< int > & GetCanonicalFeatures(int font_id, int class_id) const
int ReliablySeparable(int font_id1, int class_id1, int font_id2, int class_id2, const IntFeatureMap &feature_map, bool thorough) const

◆ DeleteDeadSamples()

void tesseract::TrainingSampleSet::DeleteDeadSamples ( )

Definition at line 540 of file trainingsampleset.cpp.

540 {
541 using namespace std::placeholders; // for _1
542 for (auto &&it = samples_.begin(); it < samples_.end();) {
543 if (*it == nullptr || (*it)->class_id() < 0) {
544 samples_.erase(it);
545 delete *it;
546 } else {
547 ++it;
548 }
549 }
550 num_raw_samples_ = samples_.size();
551 // Samples must be re-organized now we have deleted a few.
552}

◆ DeSerialize()

bool tesseract::TrainingSampleSet::DeSerialize ( bool  swap,
FILE *  fp 
)

Definition at line 124 of file trainingsampleset.cpp.

124 {
125 if (!tesseract::DeSerialize(swap, fp, samples_)) {
126 return false;
127 }
128 num_raw_samples_ = samples_.size();
129 if (!unicharset_.load_from_file(fp)) {
130 return false;
131 }
132 if (!font_id_map_.DeSerialize(swap, fp)) {
133 return false;
134 }
135 delete font_class_array_;
136 font_class_array_ = nullptr;
137 int8_t not_null;
138 if (fread(&not_null, sizeof(not_null), 1, fp) != 1) {
139 return false;
140 }
141 if (not_null) {
142 FontClassInfo empty;
143 font_class_array_ = new GENERIC_2D_ARRAY<FontClassInfo>(1, 1, empty);
144 if (!font_class_array_->DeSerializeClasses(swap, fp)) {
145 return false;
146 }
147 }
148 unicharset_size_ = unicharset_.size();
149 return true;
150}
bool DeSerialize(bool swap, FILE *fp, std::vector< T > &data)
Definition: helpers.h:205
bool DeSerializeClasses(bool swap, FILE *fp)
Definition: matrix.h:223
bool DeSerialize(bool swap, FILE *fp)
bool load_from_file(const char *const filename, bool skip_fragments)
Definition: unicharset.h:391

◆ DisplaySamplesWithFeature()

void tesseract::TrainingSampleSet::DisplaySamplesWithFeature ( int  f_index,
const Shape shape,
const IntFeatureSpace feature_space,
ScrollView::Color  color,
ScrollView window 
) const

Definition at line 792 of file trainingsampleset.cpp.

795 {
796 for (int s = 0; s < num_raw_samples(); ++s) {
797 const TrainingSample *sample = GetSample(s);
798 if (shape.ContainsUnichar(sample->class_id())) {
799 std::vector<int> indexed_features;
800 space.IndexAndSortFeatures(sample->features(), sample->num_features(), &indexed_features);
801 for (int indexed_feature : indexed_features) {
802 if (indexed_feature == f_index) {
803 sample->DisplayFeatures(color, window);
804 }
805 }
806 }
807 }
808}

◆ extract_sample()

TrainingSample * tesseract::TrainingSampleSet::extract_sample ( int  index)
inline

Definition at line 157 of file trainingsampleset.h.

157 {
158 TrainingSample *sample = samples_[index];
159 samples_[index] = nullptr;
160 return sample;
161 }

◆ fontinfo_table()

const FontInfoTable & tesseract::TrainingSampleSet::fontinfo_table ( ) const
inline

Definition at line 68 of file trainingsampleset.h.

68 {
69 return fontinfo_table_;
70 }

◆ GetCanonicalDist()

float tesseract::TrainingSampleSet::GetCanonicalDist ( int  font_id,
int  class_id 
) const

Definition at line 513 of file trainingsampleset.cpp.

513 {
514 ASSERT_HOST(font_class_array_ != nullptr);
515 int font_index = font_id_map_.SparseToCompact(font_id);
516 if (font_index < 0) {
517 return 0.0f;
518 }
519 if ((*font_class_array_)(font_index, class_id).canonical_sample >= 0) {
520 return (*font_class_array_)(font_index, class_id).canonical_dist;
521 } else {
522 return 0.0f;
523 }
524}

◆ GetCanonicalFeatures()

const std::vector< int > & tesseract::TrainingSampleSet::GetCanonicalFeatures ( int  font_id,
int  class_id 
) const

Definition at line 263 of file trainingsampleset.cpp.

263 {
264 int font_index = font_id_map_.SparseToCompact(font_id);
265 ASSERT_HOST(font_index >= 0);
266 return (*font_class_array_)(font_index, class_id).canonical_features;
267}

◆ GetCanonicalSample()

const TrainingSample * tesseract::TrainingSampleSet::GetCanonicalSample ( int  font_id,
int  class_id 
) const

Definition at line 501 of file trainingsampleset.cpp.

501 {
502 ASSERT_HOST(font_class_array_ != nullptr);
503 int font_index = font_id_map_.SparseToCompact(font_id);
504 if (font_index < 0) {
505 return nullptr;
506 }
507 const int sample_index = (*font_class_array_)(font_index, class_id).canonical_sample;
508 return sample_index >= 0 ? samples_[sample_index] : nullptr;
509}

◆ GetCloudFeatures()

const BitVector & tesseract::TrainingSampleSet::GetCloudFeatures ( int  font_id,
int  class_id 
) const

Definition at line 256 of file trainingsampleset.cpp.

256 {
257 int font_index = font_id_map_.SparseToCompact(font_id);
258 ASSERT_HOST(font_index >= 0);
259 return (*font_class_array_)(font_index, class_id).cloud_features;
260}

◆ GetSample() [1/2]

const TrainingSample * tesseract::TrainingSampleSet::GetSample ( int  font_id,
int  class_id,
int  index 
) const

Definition at line 223 of file trainingsampleset.cpp.

223 {
224 ASSERT_HOST(font_class_array_ != nullptr);
225 int font_index = font_id_map_.SparseToCompact(font_id);
226 if (font_index < 0) {
227 return nullptr;
228 }
229 int sample_index = (*font_class_array_)(font_index, class_id).samples[index];
230 return samples_[sample_index];
231}

◆ GetSample() [2/2]

const TrainingSample * tesseract::TrainingSampleSet::GetSample ( int  index) const

Definition at line 217 of file trainingsampleset.cpp.

217 {
218 return samples_[index];
219}

◆ GlobalSampleIndex()

int tesseract::TrainingSampleSet::GlobalSampleIndex ( int  font_id,
int  class_id,
int  index 
) const

Definition at line 490 of file trainingsampleset.cpp.

490 {
491 ASSERT_HOST(font_class_array_ != nullptr);
492 int font_index = font_id_map_.SparseToCompact(font_id);
493 if (font_index < 0) {
494 return -1;
495 }
496 return (*font_class_array_)(font_index, class_id).samples[index];
497}

◆ IndexFeatures()

void tesseract::TrainingSampleSet::IndexFeatures ( const IntFeatureSpace feature_space)

Definition at line 527 of file trainingsampleset.cpp.

527 {
528 for (auto &sample : samples_) {
529 sample->IndexFeatures(feature_space);
530 }
531}

◆ KillSample()

void tesseract::TrainingSampleSet::KillSample ( TrainingSample sample)

Definition at line 535 of file trainingsampleset.cpp.

535 {
536 sample->set_sample_index(-1);
537}

◆ LoadUnicharset()

void tesseract::TrainingSampleSet::LoadUnicharset ( const char *  filename)

Definition at line 153 of file trainingsampleset.cpp.

153 {
154 if (!unicharset_.load_from_file(filename)) {
155 tprintf(
156 "Failed to load unicharset from file %s\n"
157 "Building unicharset from scratch...\n",
158 filename);
159 unicharset_.clear();
160 // Add special characters as they were removed by the clear.
161 UNICHARSET empty;
162 unicharset_.AppendOtherUnicharset(empty);
163 }
164 unicharset_size_ = unicharset_.size();
165}
void AppendOtherUnicharset(const UNICHARSET &src)
Definition: unicharset.cpp:454

◆ mutable_sample()

TrainingSample * tesseract::TrainingSampleSet::mutable_sample ( int  index)
inline

Definition at line 153 of file trainingsampleset.h.

153 {
154 return samples_[index];
155 }

◆ MutableSample()

TrainingSample * tesseract::TrainingSampleSet::MutableSample ( int  font_id,
int  class_id,
int  index 
)

Definition at line 235 of file trainingsampleset.cpp.

235 {
236 ASSERT_HOST(font_class_array_ != nullptr);
237 int font_index = font_id_map_.SparseToCompact(font_id);
238 if (font_index < 0) {
239 return nullptr;
240 }
241 int sample_index = (*font_class_array_)(font_index, class_id).samples[index];
242 return samples_[sample_index];
243}

◆ num_raw_samples()

int tesseract::TrainingSampleSet::num_raw_samples ( ) const
inline

Definition at line 56 of file trainingsampleset.h.

56 {
57 return num_raw_samples_;
58 }

◆ num_samples()

int tesseract::TrainingSampleSet::num_samples ( ) const
inline

Definition at line 53 of file trainingsampleset.h.

53 {
54 return samples_.size();
55 }

◆ NumClassSamples()

int tesseract::TrainingSampleSet::NumClassSamples ( int  font_id,
int  class_id,
bool  randomize 
) const

Definition at line 198 of file trainingsampleset.cpp.

198 {
199 ASSERT_HOST(font_class_array_ != nullptr);
200 if (font_id < 0 || class_id < 0 || font_id >= font_id_map_.SparseSize() ||
201 class_id >= unicharset_size_) {
202 // There are no samples because the font or class doesn't exist.
203 return 0;
204 }
205 int font_index = font_id_map_.SparseToCompact(font_id);
206 if (font_index < 0) {
207 return 0; // The font has no samples.
208 }
209 if (randomize) {
210 return (*font_class_array_)(font_index, class_id).samples.size();
211 } else {
212 return (*font_class_array_)(font_index, class_id).num_raw_samples;
213 }
214}
int SparseSize() const override
Definition: indexmapbidi.h:144

◆ NumFonts()

int tesseract::TrainingSampleSet::NumFonts ( ) const
inline

Definition at line 59 of file trainingsampleset.h.

59 {
60 return font_id_map_.SparseSize();
61 }

◆ OrganizeByFontAndClass()

void tesseract::TrainingSampleSet::OrganizeByFontAndClass ( )

Definition at line 555 of file trainingsampleset.cpp.

555 {
556 // Font indexes are sparse, so we used a map to compact them, so we can
557 // have an efficient 2-d array of fonts and character classes.
559 int compact_font_size = font_id_map_.CompactSize();
560 // Get a 2-d array of generic vectors.
561 delete font_class_array_;
562 FontClassInfo empty;
563 font_class_array_ =
564 new GENERIC_2D_ARRAY<FontClassInfo>(compact_font_size, unicharset_size_, empty);
565 for (size_t s = 0; s < samples_.size(); ++s) {
566 int font_id = samples_[s]->font_id();
567 int class_id = samples_[s]->class_id();
568 if (font_id < 0 || font_id >= font_id_map_.SparseSize()) {
569 tprintf("Font id = %d/%d, class id = %d/%d on sample %zu\n", font_id,
570 font_id_map_.SparseSize(), class_id, unicharset_size_, s);
571 }
572 ASSERT_HOST(font_id >= 0 && font_id < font_id_map_.SparseSize());
573 ASSERT_HOST(class_id >= 0 && class_id < unicharset_size_);
574 int font_index = font_id_map_.SparseToCompact(font_id);
575 (*font_class_array_)(font_index, class_id).samples.push_back(s);
576 }
577 // Set the num_raw_samples member of the FontClassInfo, to set the boundary
578 // between the raw samples and the replicated ones.
579 for (int f = 0; f < compact_font_size; ++f) {
580 for (int c = 0; c < unicharset_size_; ++c) {
581 (*font_class_array_)(f, c).num_raw_samples = (*font_class_array_)(f, c).samples.size();
582 }
583 }
584 // This is the global number of samples and also marks the boundary between
585 // real and replicated samples.
586 num_raw_samples_ = samples_.size();
587}

◆ ReliablySeparable()

int tesseract::TrainingSampleSet::ReliablySeparable ( int  font_id1,
int  class_id1,
int  font_id2,
int  class_id2,
const IntFeatureMap feature_map,
bool  thorough 
) const

Definition at line 451 of file trainingsampleset.cpp.

452 {
453 int result = 0;
454 const TrainingSample *sample2 = GetCanonicalSample(font_id2, class_id2);
455 if (sample2 == nullptr) {
456 return 0; // There are no canonical features.
457 }
458 const std::vector<int> &canonical2 = GetCanonicalFeatures(font_id2, class_id2);
459 const BitVector &cloud1 = GetCloudFeatures(font_id1, class_id1);
460 if (cloud1.empty()) {
461 return canonical2.size(); // There are no cloud features.
462 }
463
464 // Find a canonical2 feature that is not in cloud1.
465 for (int feature : canonical2) {
466 if (cloud1[feature]) {
467 continue;
468 }
469 // Gather the near neighbours of f.
470 std::vector<int> good_features;
471 AddNearFeatures(feature_map, feature, 1, &good_features);
472 // Check that none of the good_features are in the cloud.
473 bool found = false;
474 for (auto good_f : good_features) {
475 if (cloud1[good_f]) {
476 found = true;
477 break;
478 }
479 }
480 if (found) {
481 continue; // Found one in the cloud.
482 }
483 ++result;
484 }
485 return result;
486}
const BitVector & GetCloudFeatures(int font_id, int class_id) const

◆ ReplicateAndRandomizeSamples()

void tesseract::TrainingSampleSet::ReplicateAndRandomizeSamples ( )

Definition at line 707 of file trainingsampleset.cpp.

707 {
708 ASSERT_HOST(font_class_array_ != nullptr);
709 int font_size = font_id_map_.CompactSize();
710 for (int font_index = 0; font_index < font_size; ++font_index) {
711 for (int c = 0; c < unicharset_size_; ++c) {
712 FontClassInfo &fcinfo = (*font_class_array_)(font_index, c);
713 int sample_count = fcinfo.samples.size();
714 int min_samples = 2 * std::max(kSampleRandomSize, sample_count);
715 if (sample_count > 0 && sample_count < min_samples) {
716 int base_count = sample_count;
717 for (int base_index = 0; sample_count < min_samples; ++sample_count) {
718 int src_index = fcinfo.samples[base_index++];
719 if (base_index >= base_count) {
720 base_index = 0;
721 }
722 TrainingSample *sample =
723 samples_[src_index]->RandomizedCopy(sample_count % kSampleRandomSize);
724 int sample_index = samples_.size();
725 sample->set_sample_index(sample_index);
726 samples_.push_back(sample);
727 fcinfo.samples.push_back(sample_index);
728 }
729 }
730 }
731 }
732}

◆ SampleToString()

std::string tesseract::TrainingSampleSet::SampleToString ( const TrainingSample sample) const

Definition at line 247 of file trainingsampleset.cpp.

247 {
248 std::string boxfile_str;
249 MakeBoxFileStr(unicharset_.id_to_unichar(sample.class_id()), sample.bounding_box(),
250 sample.page_num(), boxfile_str);
251 return std::string(fontinfo_table_.at(sample.font_id()).name) + " " + boxfile_str;
252}
void MakeBoxFileStr(const char *unichar_str, const TBOX &box, int page_num, std::string &box_str)
Definition: boxread.cpp:280
T & at(int index) const
Definition: genericvector.h:89
const char * id_to_unichar(UNICHAR_ID id) const
Definition: unicharset.cpp:279

◆ Serialize()

bool tesseract::TrainingSampleSet::Serialize ( FILE *  fp) const

Definition at line 100 of file trainingsampleset.cpp.

100 {
101 if (!tesseract::Serialize(fp, samples_)) {
102 return false;
103 }
104 if (!unicharset_.save_to_file(fp)) {
105 return false;
106 }
107 if (!font_id_map_.Serialize(fp)) {
108 return false;
109 }
110 int8_t not_null = font_class_array_ != nullptr;
111 if (fwrite(&not_null, sizeof(not_null), 1, fp) != 1) {
112 return false;
113 }
114 if (not_null) {
115 if (!font_class_array_->SerializeClasses(fp)) {
116 return false;
117 }
118 }
119 return true;
120}
bool Serialize(FILE *fp, const std::vector< T > &data)
Definition: helpers.h:236
bool SerializeClasses(FILE *fp) const
Definition: matrix.h:204
bool Serialize(FILE *fp) const
bool save_to_file(const char *const filename) const
Definition: unicharset.h:361

◆ SetupFontIdMap()

void tesseract::TrainingSampleSet::SetupFontIdMap ( )

Definition at line 591 of file trainingsampleset.cpp.

591 {
592 // Number of samples for each font_id.
593 std::vector<int> font_counts;
594 for (auto &sample : samples_) {
595 const int font_id = sample->font_id();
596 while (font_id >= font_counts.size()) {
597 font_counts.push_back(0);
598 }
599 ++font_counts[font_id];
600 }
601 font_id_map_.Init(font_counts.size(), false);
602 for (size_t f = 0; f < font_counts.size(); ++f) {
603 font_id_map_.SetMap(f, font_counts[f] > 0);
604 }
605 font_id_map_.Setup();
606}
void Init(int size, bool all_mapped)
void SetMap(int sparse_index, bool mapped)

◆ UnicharDistance()

float tesseract::TrainingSampleSet::UnicharDistance ( const UnicharAndFonts uf1,
const UnicharAndFonts uf2,
bool  matched_fonts,
const IntFeatureMap feature_map 
)

Definition at line 273 of file trainingsampleset.cpp.

274 {
275 int num_fonts1 = uf1.font_ids.size();
276 int c1 = uf1.unichar_id;
277 int num_fonts2 = uf2.font_ids.size();
278 int c2 = uf2.unichar_id;
279 double dist_sum = 0.0;
280 int dist_count = 0;
281 const bool debug = false;
282 if (matched_fonts) {
283 // Compute distances only where fonts match.
284 for (int i = 0; i < num_fonts1; ++i) {
285 int f1 = uf1.font_ids[i];
286 for (int j = 0; j < num_fonts2; ++j) {
287 int f2 = uf2.font_ids[j];
288 if (f1 == f2) {
289 dist_sum += ClusterDistance(f1, c1, f2, c2, feature_map);
290 ++dist_count;
291 }
292 }
293 }
294 } else if (num_fonts1 * num_fonts2 <= kSquareLimit) {
295 // Small enough sets to compute all the distances.
296 for (int i = 0; i < num_fonts1; ++i) {
297 int f1 = uf1.font_ids[i];
298 for (int j = 0; j < num_fonts2; ++j) {
299 int f2 = uf2.font_ids[j];
300 dist_sum += ClusterDistance(f1, c1, f2, c2, feature_map);
301 if (debug) {
302 tprintf("Cluster dist %d %d %d %d = %g\n", f1, c1, f2, c2,
303 ClusterDistance(f1, c1, f2, c2, feature_map));
304 }
305 ++dist_count;
306 }
307 }
308 } else {
309 // Subsample distances, using the largest set once, and stepping through
310 // the smaller set so as to ensure that all the pairs are different.
311 int increment = kPrime1 != num_fonts2 ? kPrime1 : kPrime2;
312 int index = 0;
313 int num_samples = std::max(num_fonts1, num_fonts2);
314 for (int i = 0; i < num_samples; ++i, index += increment) {
315 int f1 = uf1.font_ids[i % num_fonts1];
316 int f2 = uf2.font_ids[index % num_fonts2];
317 if (debug) {
318 tprintf("Cluster dist %d %d %d %d = %g\n", f1, c1, f2, c2,
319 ClusterDistance(f1, c1, f2, c2, feature_map));
320 }
321 dist_sum += ClusterDistance(f1, c1, f2, c2, feature_map);
322 ++dist_count;
323 }
324 }
325 if (dist_count == 0) {
326 if (matched_fonts) {
327 return UnicharDistance(uf1, uf2, false, feature_map);
328 }
329 return 0.0f;
330 }
331 return dist_sum / dist_count;
332}
const int kPrime2
const int kPrime1
const int kSquareLimit
float ClusterDistance(int font_id1, int class_id1, int font_id2, int class_id2, const IntFeatureMap &feature_map)
float UnicharDistance(const UnicharAndFonts &uf1, const UnicharAndFonts &uf2, bool matched_fonts, const IntFeatureMap &feature_map)

◆ unicharset()

const UNICHARSET & tesseract::TrainingSampleSet::unicharset ( ) const
inline

Definition at line 62 of file trainingsampleset.h.

62 {
63 return unicharset_;
64 }

The documentation for this class was generated from the following files: