tesseract v5.3.3.20231005
errorcounter.cpp
Go to the documentation of this file.
1// Copyright 2011 Google Inc. All Rights Reserved.
2// Author: rays@google.com (Ray Smith)
3//
4// Licensed under the Apache License, Version 2.0 (the "License");
5// you may not use this file except in compliance with the License.
6// You may obtain a copy of the License at
7// http://www.apache.org/licenses/LICENSE-2.0
8// Unless required by applicable law or agreed to in writing, software
9// distributed under the License is distributed on an "AS IS" BASIS,
10// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11// See the License for the specific language governing permissions and
12// limitations under the License.
13//
15
16#ifdef HAVE_CONFIG_H
17# include "config_auto.h"
18#endif
19
20#include "errorcounter.h"
21
22#include "fontinfo.h"
23#include "sampleiterator.h"
24#include "shapeclassifier.h"
25#include "shapetable.h"
26#include "trainingsample.h"
27#include "trainingsampleset.h"
28#include "unicity_table.h"
29
30#include <algorithm>
31#include <ctime>
32
33namespace tesseract {
34
35// Difference in result rating to be thought of as an "equal" choice.
36const double kRatingEpsilon = 1.0 / 32;
37
38// Tests a classifier, computing its error rate.
39// See errorcounter.h for description of arguments.
40// Iterates over the samples, calling the classifier in normal/silent mode.
41// If the classifier makes a CT_UNICHAR_TOPN_ERR error, and the appropriate
42// report_level is set (4 or greater), it will then call the classifier again
43// with a debug flag and a keep_this argument to find out what is going on.
44double ErrorCounter::ComputeErrorRate(ShapeClassifier *classifier, int report_level,
45 CountTypes boosting_mode, const FontInfoTable &fontinfo_table,
46 const std::vector<Image > &page_images, SampleIterator *it,
47 double *unichar_error, double *scaled_error,
48 std::string *fonts_report) {
49 const int fontsize = it->sample_set()->NumFonts();
50 ErrorCounter counter(classifier->GetUnicharset(), fontsize);
51 std::vector<UnicharRating> results;
52
53 clock_t start = clock();
54 unsigned total_samples = 0;
55 double unscaled_error = 0.0;
56 // Set a number of samples on which to run the classify debug mode.
57 int error_samples = report_level > 3 ? report_level * report_level : 0;
58 // Iterate over all the samples, accumulating errors.
59 for (it->Begin(); !it->AtEnd(); it->Next()) {
60 TrainingSample *mutable_sample = it->MutableSample();
61 int page_index = mutable_sample->page_num();
62 Image page_pix =
63 0 <= page_index && page_index < page_images.size() ? page_images[page_index] : nullptr;
64 // No debug, no keep this.
65 classifier->UnicharClassifySample(*mutable_sample, page_pix, 0, INVALID_UNICHAR_ID, &results);
66 bool debug_it = false;
67 int correct_id = mutable_sample->class_id();
68 if (counter.unicharset_.has_special_codes() &&
69 (correct_id == UNICHAR_SPACE || correct_id == UNICHAR_JOINED ||
70 correct_id == UNICHAR_BROKEN)) {
71 // This is junk so use the special counter.
72 debug_it = counter.AccumulateJunk(report_level > 3, results, mutable_sample);
73 } else {
74 debug_it = counter.AccumulateErrors(report_level > 3, boosting_mode, fontinfo_table, results,
75 mutable_sample);
76 }
77 if (debug_it && error_samples > 0) {
78 // Running debug, keep the correct answer, and debug the classifier.
79 tprintf("Error on sample %d: %s Classifier debug output:\n", it->GlobalSampleIndex(),
80 it->sample_set()->SampleToString(*mutable_sample).c_str());
81#ifndef GRAPHICS_DISABLED
82 classifier->DebugDisplay(*mutable_sample, page_pix, correct_id);
83#endif
84 --error_samples;
85 }
86 ++total_samples;
87 }
88 const double total_time = 1.0 * (clock() - start) / CLOCKS_PER_SEC;
89 // Create the appropriate error report.
90 unscaled_error = counter.ReportErrors(report_level, boosting_mode, fontinfo_table, *it,
91 unichar_error, fonts_report);
92 if (scaled_error != nullptr) {
93 *scaled_error = counter.scaled_error_;
94 }
95 if (report_level > 1 && total_samples > 0) {
96 // It is useful to know the time in microseconds/char.
97 tprintf("Errors computed in %.2fs at %.1f μs/char\n", total_time,
98 1000000.0 * total_time / total_samples);
99 }
100 return unscaled_error;
101}
102
103// Tests a pair of classifiers, debugging errors of the new against the old.
104// See errorcounter.h for description of arguments.
105// Iterates over the samples, calling the classifiers in normal/silent mode.
106// If the new_classifier makes a boosting_mode error that the old_classifier
107// does not, it will then call the new_classifier again with a debug flag
108// and a keep_this argument to find out what is going on.
110 CountTypes boosting_mode, const FontInfoTable &fontinfo_table,
111 const std::vector<Image > &page_images, SampleIterator *it) {
112 int fontsize = it->sample_set()->NumFonts();
113 ErrorCounter old_counter(old_classifier->GetUnicharset(), fontsize);
114 ErrorCounter new_counter(new_classifier->GetUnicharset(), fontsize);
115 std::vector<UnicharRating> results;
116
117 int total_samples = 0;
118 int error_samples = 25;
119 int total_new_errors = 0;
120 // Iterate over all the samples, accumulating errors.
121 for (it->Begin(); !it->AtEnd(); it->Next()) {
122 TrainingSample *mutable_sample = it->MutableSample();
123 int page_index = mutable_sample->page_num();
124 Image page_pix =
125 0 <= page_index && page_index < page_images.size() ? page_images[page_index] : nullptr;
126 // No debug, no keep this.
127 old_classifier->UnicharClassifySample(*mutable_sample, page_pix, 0, INVALID_UNICHAR_ID,
128 &results);
129 int correct_id = mutable_sample->class_id();
130 if (correct_id != 0 && !old_counter.AccumulateErrors(true, boosting_mode, fontinfo_table,
131 results, mutable_sample)) {
132 // old classifier was correct, check the new one.
133 new_classifier->UnicharClassifySample(*mutable_sample, page_pix, 0, INVALID_UNICHAR_ID,
134 &results);
135 if (correct_id != 0 && new_counter.AccumulateErrors(true, boosting_mode, fontinfo_table,
136 results, mutable_sample)) {
137 tprintf("New Error on sample %d: Classifier debug output:\n", it->GlobalSampleIndex());
138 ++total_new_errors;
139 new_classifier->UnicharClassifySample(*mutable_sample, page_pix, 1, correct_id, &results);
140 if (results.size() > 0 && error_samples > 0) {
141#ifndef GRAPHICS_DISABLED
142 new_classifier->DebugDisplay(*mutable_sample, page_pix, correct_id);
143#endif
144 --error_samples;
145 }
146 }
147 }
148 ++total_samples;
149 }
150 tprintf("Total new errors = %d\n", total_new_errors);
151}
152
153// Constructor is private. Only anticipated use of ErrorCounter is via
154// the static ComputeErrorRate.
155ErrorCounter::ErrorCounter(const UNICHARSET &unicharset, int fontsize)
156 : scaled_error_(0.0)
157 , rating_epsilon_(kRatingEpsilon)
158 , unichar_counts_(unicharset.size(), unicharset.size(), 0)
159 , ok_score_hist_(0, 101)
160 , bad_score_hist_(0, 101)
161 , unicharset_(unicharset) {
162 Counts empty_counts;
163 font_counts_.clear();
164 font_counts_.resize(fontsize, empty_counts);
165 multi_unichar_counts_.clear();
166 multi_unichar_counts_.resize(unicharset.size(), 0);
167}
168
169// Accumulates the errors from the classifier results on a single sample.
170// Returns true if debug is true and a CT_UNICHAR_TOPN_ERR error occurred.
171// boosting_mode selects the type of error to be used for boosting and the
172// is_error_ member of sample is set according to whether the required type
173// of error occurred. The font_table provides access to font properties
174// for error counting and shape_table is used to understand the relationship
175// between unichar_ids and shape_ids in the results
176bool ErrorCounter::AccumulateErrors(bool debug, CountTypes boosting_mode,
177 const FontInfoTable &font_table,
178 const std::vector<UnicharRating> &results,
179 TrainingSample *sample) {
180 int num_results = results.size();
181 int answer_actual_rank = -1;
182 int font_id = sample->font_id();
183 int unichar_id = sample->class_id();
184 sample->set_is_error(false);
185 if (num_results == 0) {
186 // Reject. We count rejects as a separate category, but still mark the
187 // sample as an error in case any training module wants to use that to
188 // improve the classifier.
189 sample->set_is_error(true);
190 ++font_counts_[font_id].n[CT_REJECT];
191 } else {
192 // Find rank of correct unichar answer, using rating_epsilon_ to allow
193 // different answers to score as equal. (Ignoring the font.)
194 int epsilon_rank = 0;
195 int answer_epsilon_rank = -1;
196 int num_top_answers = 0;
197 double prev_rating = results[0].rating;
198 bool joined = false;
199 bool broken = false;
200 int res_index = 0;
201 while (res_index < num_results) {
202 if (results[res_index].rating < prev_rating - rating_epsilon_) {
203 ++epsilon_rank;
204 prev_rating = results[res_index].rating;
205 }
206 if (results[res_index].unichar_id == unichar_id && answer_epsilon_rank < 0) {
207 answer_epsilon_rank = epsilon_rank;
208 answer_actual_rank = res_index;
209 }
210 if (results[res_index].unichar_id == UNICHAR_JOINED && unicharset_.has_special_codes()) {
211 joined = true;
212 } else if (results[res_index].unichar_id == UNICHAR_BROKEN &&
213 unicharset_.has_special_codes()) {
214 broken = true;
215 } else if (epsilon_rank == 0) {
216 ++num_top_answers;
217 }
218 ++res_index;
219 }
220 if (answer_actual_rank != 0) {
221 // Correct result is not absolute top.
222 ++font_counts_[font_id].n[CT_UNICHAR_TOPTOP_ERR];
223 if (boosting_mode == CT_UNICHAR_TOPTOP_ERR) {
224 sample->set_is_error(true);
225 }
226 }
227 if (answer_epsilon_rank == 0) {
228 ++font_counts_[font_id].n[CT_UNICHAR_TOP_OK];
229 // Unichar OK, but count if multiple unichars.
230 if (num_top_answers > 1) {
231 ++font_counts_[font_id].n[CT_OK_MULTI_UNICHAR];
232 ++multi_unichar_counts_[unichar_id];
233 }
234 // Check to see if any font in the top choice has attributes that match.
235 // TODO(rays) It is easy to add counters for individual font attributes
236 // here if we want them.
237 if (font_table.SetContainsFontProperties(font_id, results[answer_actual_rank].fonts)) {
238 // Font attributes were matched.
239 // Check for multiple properties.
240 if (font_table.SetContainsMultipleFontProperties(results[answer_actual_rank].fonts)) {
241 ++font_counts_[font_id].n[CT_OK_MULTI_FONT];
242 }
243 } else {
244 // Font attributes weren't matched.
245 ++font_counts_[font_id].n[CT_FONT_ATTR_ERR];
246 }
247 } else {
248 // This is a top unichar error.
249 ++font_counts_[font_id].n[CT_UNICHAR_TOP1_ERR];
250 if (boosting_mode == CT_UNICHAR_TOP1_ERR) {
251 sample->set_is_error(true);
252 }
253 // Count maps from unichar id to wrong unichar id.
254 ++unichar_counts_(unichar_id, results[0].unichar_id);
255 if (answer_epsilon_rank < 0 || answer_epsilon_rank >= 2) {
256 // It is also a 2nd choice unichar error.
257 ++font_counts_[font_id].n[CT_UNICHAR_TOP2_ERR];
258 if (boosting_mode == CT_UNICHAR_TOP2_ERR) {
259 sample->set_is_error(true);
260 }
261 }
262 if (answer_epsilon_rank < 0) {
263 // It is also a top-n choice unichar error.
264 ++font_counts_[font_id].n[CT_UNICHAR_TOPN_ERR];
265 if (boosting_mode == CT_UNICHAR_TOPN_ERR) {
266 sample->set_is_error(true);
267 }
268 answer_epsilon_rank = epsilon_rank;
269 }
270 }
271 // Compute mean number of return values and mean rank of correct answer.
272 font_counts_[font_id].n[CT_NUM_RESULTS] += num_results;
273 font_counts_[font_id].n[CT_RANK] += answer_epsilon_rank;
274 if (joined) {
275 ++font_counts_[font_id].n[CT_OK_JOINED];
276 }
277 if (broken) {
278 ++font_counts_[font_id].n[CT_OK_BROKEN];
279 }
280 }
281 // If it was an error for boosting then sum the weight.
282 if (sample->is_error()) {
283 scaled_error_ += sample->weight();
284 if (debug) {
285 tprintf("%d results for char %s font %d :", num_results,
286 unicharset_.id_to_unichar(unichar_id), font_id);
287 for (int i = 0; i < num_results; ++i) {
288 tprintf(" %.3f : %s\n", results[i].rating,
289 unicharset_.id_to_unichar(results[i].unichar_id));
290 }
291 return true;
292 }
293 int percent = 0;
294 if (num_results > 0) {
295 percent = IntCastRounded(results[0].rating * 100);
296 }
297 bad_score_hist_.add(percent, 1);
298 } else {
299 int percent = 0;
300 if (answer_actual_rank >= 0) {
301 percent = IntCastRounded(results[answer_actual_rank].rating * 100);
302 }
303 ok_score_hist_.add(percent, 1);
304 }
305 return false;
306}
307
308// Accumulates counts for junk. Counts only whether the junk was correctly
309// rejected or not.
310bool ErrorCounter::AccumulateJunk(bool debug, const std::vector<UnicharRating> &results,
311 TrainingSample *sample) {
312 // For junk we accept no answer, or an explicit shape answer matching the
313 // class id of the sample.
314 const int num_results = results.size();
315 const int font_id = sample->font_id();
316 const int unichar_id = sample->class_id();
317 int percent = 0;
318 if (num_results > 0) {
319 percent = IntCastRounded(results[0].rating * 100);
320 }
321 if (num_results > 0 && results[0].unichar_id != unichar_id) {
322 // This is a junk error.
323 ++font_counts_[font_id].n[CT_ACCEPTED_JUNK];
324 sample->set_is_error(true);
325 // It counts as an error for boosting too so sum the weight.
326 scaled_error_ += sample->weight();
327 bad_score_hist_.add(percent, 1);
328 return debug;
329 } else {
330 // Correctly rejected.
331 ++font_counts_[font_id].n[CT_REJECTED_JUNK];
332 sample->set_is_error(false);
333 ok_score_hist_.add(percent, 1);
334 }
335 return false;
336}
337
338// Creates a report of the error rate. The report_level controls the detail
339// that is reported to stderr via tprintf:
340// 0 -> no output.
341// >=1 -> bottom-line error rate.
342// >=3 -> font-level error rate.
343// boosting_mode determines the return value. It selects which (un-weighted)
344// error rate to return.
345// The fontinfo_table from MasterTrainer provides the names of fonts.
346// The it determines the current subset of the training samples.
347// If not nullptr, the top-choice unichar error rate is saved in unichar_error.
348// If not nullptr, the report string is saved in fonts_report.
349// (Ignoring report_level).
350double ErrorCounter::ReportErrors(int report_level, CountTypes boosting_mode,
351 const FontInfoTable &fontinfo_table, const SampleIterator &it,
352 double *unichar_error, std::string *fonts_report) {
353 // Compute totals over all the fonts and report individual font results
354 // when required.
355 Counts totals;
356 int fontsize = font_counts_.size();
357 for (int f = 0; f < fontsize; ++f) {
358 // Accumulate counts over fonts.
359 totals += font_counts_[f];
360 std::string font_report;
361 if (ReportString(false, font_counts_[f], font_report)) {
362 if (fonts_report != nullptr) {
363 *fonts_report += fontinfo_table.at(f).name;
364 *fonts_report += ": ";
365 *fonts_report += font_report;
366 *fonts_report += "\n";
367 }
368 if (report_level > 2) {
369 // Report individual font error rates.
370 tprintf("%s: %s\n", fontinfo_table.at(f).name, font_report.c_str());
371 }
372 }
373 }
374 // Report the totals.
375 std::string total_report;
376 bool any_results = ReportString(true, totals, total_report);
377 if (fonts_report != nullptr && fonts_report->empty()) {
378 // Make sure we return something even if there were no samples.
379 *fonts_report = "NoSamplesFound: ";
380 *fonts_report += total_report;
381 *fonts_report += "\n";
382 }
383 if (report_level > 0) {
384 // Report the totals.
385 std::string total_report;
386 if (any_results) {
387 tprintf("TOTAL Scaled Err=%.4g%%, %s\n", scaled_error_ * 100.0, total_report.c_str());
388 }
389 // Report the worst substitution error only for now.
390 if (totals.n[CT_UNICHAR_TOP1_ERR] > 0) {
391 int charsetsize = unicharset_.size();
392 int worst_uni_id = 0;
393 int worst_result_id = 0;
394 int worst_err = 0;
395 for (int u = 0; u < charsetsize; ++u) {
396 for (int v = 0; v < charsetsize; ++v) {
397 if (unichar_counts_(u, v) > worst_err) {
398 worst_err = unichar_counts_(u, v);
399 worst_uni_id = u;
400 worst_result_id = v;
401 }
402 }
403 }
404 if (worst_err > 0) {
405 tprintf("Worst error = %d:%s -> %s with %d/%d=%.2f%% errors\n", worst_uni_id,
406 unicharset_.id_to_unichar(worst_uni_id), unicharset_.id_to_unichar(worst_result_id),
407 worst_err, totals.n[CT_UNICHAR_TOP1_ERR],
408 100.0 * worst_err / totals.n[CT_UNICHAR_TOP1_ERR]);
409 }
410 }
411 tprintf("Multi-unichar shape use:\n");
412 for (int u = 0; u < multi_unichar_counts_.size(); ++u) {
413 if (multi_unichar_counts_[u] > 0) {
414 tprintf("%d multiple answers for unichar: %s\n", multi_unichar_counts_[u],
415 unicharset_.id_to_unichar(u));
416 }
417 }
418 tprintf("OK Score histogram:\n");
419 ok_score_hist_.print();
420 tprintf("ERROR Score histogram:\n");
421 bad_score_hist_.print();
422 }
423
424 double rates[CT_SIZE];
425 if (!ComputeRates(totals, rates)) {
426 return 0.0;
427 }
428 // Set output values if asked for.
429 if (unichar_error != nullptr) {
430 *unichar_error = rates[CT_UNICHAR_TOP1_ERR];
431 }
432 return rates[boosting_mode];
433}
434
435// Sets the report string to a combined human and machine-readable report
436// string of the error rates.
437// Returns false if there is no data, leaving report unchanged, unless
438// even_if_empty is true.
439bool ErrorCounter::ReportString(bool even_if_empty, const Counts &counts, std::string &report) {
440 // Compute the error rates.
441 double rates[CT_SIZE];
442 if (!ComputeRates(counts, rates) && !even_if_empty) {
443 return false;
444 }
445 // Using %.4g%%, the length of the output string should exactly match the
446 // length of the format string, but in case of overflow, allow for +eddd
447 // on each number.
448 const int kMaxExtraLength = 5; // Length of +eddd.
449 // Keep this format string and the snprintf in sync with the CountTypes enum.
450 const char format_str[] =
451 "Unichar=%.4g%%[1], %.4g%%[2], %.4g%%[n], %.4g%%[T] "
452 "Mult=%.4g%%, Jn=%.4g%%, Brk=%.4g%%, Rej=%.4g%%, "
453 "FontAttr=%.4g%%, Multi=%.4g%%, "
454 "Answers=%.3g, Rank=%.3g, "
455 "OKjunk=%.4g%%, Badjunk=%.4g%%";
456 constexpr size_t max_str_len = sizeof(format_str) + kMaxExtraLength * (CT_SIZE - 1) + 1;
457 char formatted_str[max_str_len];
458 snprintf(formatted_str, max_str_len, format_str, rates[CT_UNICHAR_TOP1_ERR] * 100.0,
459 rates[CT_UNICHAR_TOP2_ERR] * 100.0, rates[CT_UNICHAR_TOPN_ERR] * 100.0,
460 rates[CT_UNICHAR_TOPTOP_ERR] * 100.0, rates[CT_OK_MULTI_UNICHAR] * 100.0,
461 rates[CT_OK_JOINED] * 100.0, rates[CT_OK_BROKEN] * 100.0, rates[CT_REJECT] * 100.0,
462 rates[CT_FONT_ATTR_ERR] * 100.0, rates[CT_OK_MULTI_FONT] * 100.0, rates[CT_NUM_RESULTS],
463 rates[CT_RANK], 100.0 * rates[CT_REJECTED_JUNK], 100.0 * rates[CT_ACCEPTED_JUNK]);
464 report = formatted_str;
465 // Now append each field of counts with a tab in front so the result can
466 // be loaded into a spreadsheet.
467 for (int ct : counts.n) {
468 report += "\t" + std::to_string(ct);
469 }
470 return true;
471}
472
473// Computes the error rates and returns in rates which is an array of size
474// CT_SIZE. Returns false if there is no data, leaving rates unchanged.
475bool ErrorCounter::ComputeRates(const Counts &counts, double rates[CT_SIZE]) {
476 const int ok_samples =
477 counts.n[CT_UNICHAR_TOP_OK] + counts.n[CT_UNICHAR_TOP1_ERR] + counts.n[CT_REJECT];
478 const int junk_samples = counts.n[CT_REJECTED_JUNK] + counts.n[CT_ACCEPTED_JUNK];
479 // Compute rates for normal chars.
480 double denominator = static_cast<double>(std::max(ok_samples, 1));
481 for (int ct = 0; ct <= CT_RANK; ++ct) {
482 rates[ct] = counts.n[ct] / denominator;
483 }
484 // Compute rates for junk.
485 denominator = static_cast<double>(std::max(junk_samples, 1));
486 for (int ct = CT_REJECTED_JUNK; ct <= CT_ACCEPTED_JUNK; ++ct) {
487 rates[ct] = counts.n[ct] / denominator;
488 }
489 return ok_samples != 0 || junk_samples != 0;
490}
491
492ErrorCounter::Counts::Counts() {
493 memset(n, 0, sizeof(n[0]) * CT_SIZE);
494}
495// Adds other into this for computing totals.
496void ErrorCounter::Counts::operator+=(const Counts &other) {
497 for (int ct = 0; ct < CT_SIZE; ++ct) {
498 n[ct] += other.n[ct];
499 }
500}
501
502} // namespace tesseract.
ICOORD & operator+=(ICOORD &op1, const ICOORD &op2)
Definition: points.h:372
const double kRatingEpsilon
void tprintf(const char *format,...)
Definition: tprintf.cpp:41
int IntCastRounded(double x)
Definition: helpers.h:170
@ UNICHAR_SPACE
Definition: unicharset.h:36
@ UNICHAR_BROKEN
Definition: unicharset.h:38
@ UNICHAR_JOINED
Definition: unicharset.h:37
@ CT_UNICHAR_TOPN_ERR
Definition: errorcounter.h:76
@ CT_UNICHAR_TOP_OK
Definition: errorcounter.h:70
@ CT_UNICHAR_TOP1_ERR
Definition: errorcounter.h:74
@ CT_UNICHAR_TOP2_ERR
Definition: errorcounter.h:75
@ CT_OK_MULTI_FONT
Definition: errorcounter.h:83
@ CT_REJECTED_JUNK
Definition: errorcounter.h:86
@ CT_UNICHAR_TOPTOP_ERR
Definition: errorcounter.h:77
@ CT_FONT_ATTR_ERR
Definition: errorcounter.h:82
@ CT_ACCEPTED_JUNK
Definition: errorcounter.h:87
@ CT_OK_MULTI_UNICHAR
Definition: errorcounter.h:78
@ CT_NUM_RESULTS
Definition: errorcounter.h:84
void print() const
Definition: statistc.cpp:547
void add(int32_t value, int32_t count)
Definition: statistc.cpp:99
bool has_special_codes() const
Definition: unicharset.h:756
const char * id_to_unichar(UNICHAR_ID id) const
Definition: unicharset.cpp:279
size_t size() const
Definition: unicharset.h:355
virtual int UnicharClassifySample(const TrainingSample &sample, Image page_pix, int debug, UNICHAR_ID keep_this, std::vector< UnicharRating > *results)
virtual const UNICHARSET & GetUnicharset() const
void DebugDisplay(const TrainingSample &sample, Image page_pix, UNICHAR_ID unichar_id)
UNICHAR_ID class_id() const
static void DebugNewErrors(ShapeClassifier *new_classifier, ShapeClassifier *old_classifier, CountTypes boosting_mode, const FontInfoTable &fontinfo_table, const std::vector< Image > &page_images, SampleIterator *it)
static double ComputeErrorRate(ShapeClassifier *classifier, int report_level, CountTypes boosting_mode, const FontInfoTable &fontinfo_table, const std::vector< Image > &page_images, SampleIterator *it, double *unichar_error, double *scaled_error, std::string *fonts_report)
const TrainingSampleSet * sample_set() const
TrainingSample * MutableSample() const
std::string SampleToString(const TrainingSample &sample) const