tesseract v5.3.3.20231005
lstm.h
Go to the documentation of this file.
1
2// File: lstm.h
3// Description: Long-term-short-term-memory Recurrent neural network.
4// Author: Ray Smith
5//
6// (C) Copyright 2013, Google Inc.
7// Licensed under the Apache License, Version 2.0 (the "License");
8// you may not use this file except in compliance with the License.
9// You may obtain a copy of the License at
10// http://www.apache.org/licenses/LICENSE-2.0
11// Unless required by applicable law or agreed to in writing, software
12// distributed under the License is distributed on an "AS IS" BASIS,
13// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14// See the License for the specific language governing permissions and
15// limitations under the License.
17
18#ifndef TESSERACT_LSTM_LSTM_H_
19#define TESSERACT_LSTM_LSTM_H_
20
21#include "fullyconnected.h"
22#include "network.h"
23
24namespace tesseract {
25
26// C++ Implementation of the LSTM class from lstm.py.
27class LSTM : public Network {
28public:
29 // Enum for the different weights in LSTM, to reduce some of the I/O and
30 // setup code to loops. The elements of the enum correspond to elements of an
31 // array of WeightMatrix or a corresponding array of NetworkIO.
33 CI, // Cell Inputs.
34 GI, // Gate at the input.
35 GF1, // Forget gate at the memory (1-d or looking back 1 timestep).
36 GO, // Gate at the output.
37 GFS, // Forget gate at the memory, looking back in the other dimension.
38
39 WT_COUNT // Number of WeightTypes.
40 };
41
42 // Constructor for NT_LSTM (regular 1 or 2-d LSTM), NT_LSTM_SOFTMAX (LSTM with
43 // additional softmax layer included and fed back into the input at the next
44 // timestep), or NT_LSTM_SOFTMAX_ENCODED (as LSTM_SOFTMAX, but the feedback
45 // is binary encoded instead of categorical) only.
46 // 2-d and bidi softmax LSTMs are not rejected, but are impossible to build
47 // in the conventional way because the output feedback both forwards and
48 // backwards in time does become impossible.
50 LSTM(const std::string &name, int num_inputs, int num_states, int num_outputs,
51 bool two_dimensional, NetworkType type);
52 ~LSTM() override;
53
54 // Returns the shape output from the network given an input shape (which may
55 // be partially unknown ie zero).
56 StaticShape OutputShape(const StaticShape &input_shape) const override;
57
58 std::string spec() const override {
59 std::string spec;
60 if (type_ == NT_LSTM) {
61 spec += "Lfx" + std::to_string(ns_);
62 } else if (type_ == NT_LSTM_SUMMARY) {
63 spec += "Lfxs" + std::to_string(ns_);
64 } else if (type_ == NT_LSTM_SOFTMAX) {
65 spec += "LS" + std::to_string(ns_);
66 } else if (type_ == NT_LSTM_SOFTMAX_ENCODED) {
67 spec += "LE" + std::to_string(ns_);
68 }
69 if (softmax_ != nullptr) {
70 spec += softmax_->spec();
71 }
72 return spec;
73 }
74
75 // Suspends/Enables training by setting the training_ flag. Serialize and
76 // DeSerialize only operate on the run-time data if state is false.
77 void SetEnableTraining(TrainingState state) override;
78
79 // Sets up the network for training. Initializes weights using weights of
80 // scale `range` picked according to the random number generator `randomizer`.
81 int InitWeights(float range, TRand *randomizer) override;
82 // Recursively searches the network for softmaxes with old_no outputs,
83 // and remaps their outputs according to code_map. See network.h for details.
84 int RemapOutputs(int old_no, const std::vector<int> &code_map) override;
85
86 // Converts a float network to an int network.
87 void ConvertToInt() override;
88
89 // Provides debug output on the weights.
90 void DebugWeights() override;
91
92 // Writes to the given file. Returns false in case of error.
93 bool Serialize(TFile *fp) const override;
94 // Reads from the given file. Returns false in case of error.
95 bool DeSerialize(TFile *fp) override;
96
97 // Runs forward propagation of activations on the input line.
98 // See Network for a detailed discussion of the arguments.
99 void Forward(bool debug, const NetworkIO &input, const TransposedArray *input_transpose,
100 NetworkScratch *scratch, NetworkIO *output) override;
101
102 // Runs backward propagation of errors on the deltas line.
103 // See Network for a detailed discussion of the arguments.
104 bool Backward(bool debug, const NetworkIO &fwd_deltas, NetworkScratch *scratch,
105 NetworkIO *back_deltas) override;
106 // Updates the weights using the given learning rate, momentum and adam_beta.
107 // num_samples is used in the adam computation iff use_adam_ is true.
108 void Update(float learning_rate, float momentum, float adam_beta, int num_samples) override;
109 // Sums the products of weight updates in *this and other, splitting into
110 // positive (same direction) in *same and negative (different direction) in
111 // *changed.
112 void CountAlternators(const Network &other, TFloat *same, TFloat *changed) const override;
113 // Prints the weights for debug purposes.
114 void PrintW();
115 // Prints the weight deltas for debug purposes.
116 void PrintDW();
117
118 // Returns true of this is a 2-d lstm.
119 bool Is2D() const {
120 return is_2d_;
121 }
122
123private:
124 // Resizes forward data to cope with an input image of the given width.
125 void ResizeForward(const NetworkIO &input);
126
127private:
128 // Size of padded input to weight matrices = ni_ + no_ for 1-D operation
129 // and ni_ + 2 * no_ for 2-D operation. Note that there is a phantom 1 input
130 // for the bias that makes the weight matrices of size [na + 1][no].
131 int32_t na_;
132 // Number of internal states. Equal to no_ except for a softmax LSTM.
133 // ns_ is NOT serialized, but is calculated from gate_weights_.
134 int32_t ns_;
135 // Number of additional feedback states. The softmax types feed back
136 // additional output information on top of the ns_ internal states.
137 // In the case of a binary-coded (EMBEDDED) softmax, nf_ < no_.
138 int32_t nf_;
139 // Flag indicating 2-D operation.
140 bool is_2d_;
141
142 // Gate weight arrays of size [na + 1, no].
143 WeightMatrix gate_weights_[WT_COUNT];
144 // Used only if this is a softmax LSTM.
145 FullyConnected *softmax_;
146 // Input padded with previous output of size [width, na].
147 NetworkIO source_;
148 // Internal state used during forward operation, of size [width, ns].
149 NetworkIO state_;
150 // State of the 2-d maxpool, generated during forward, used during backward.
151 GENERIC_2D_ARRAY<int8_t> which_fg_;
152 // Internal state saved from forward, but used only during backward.
153 NetworkIO node_values_[WT_COUNT];
154 // Preserved input stride_map used for Backward when NT_LSTM_SQUASHED.
155 StrideMap input_map_;
156 int input_width_;
157};
158
159} // namespace tesseract.
160
161#endif // TESSERACT_LSTM_LSTM_H_
TrainingState
Definition: network.h:90
NetworkType
Definition: network.h:41
@ NT_LSTM
Definition: network.h:58
@ NT_LSTM_SOFTMAX_ENCODED
Definition: network.h:74
@ NT_LSTM_SUMMARY
Definition: network.h:59
@ NT_LSTM_SOFTMAX
Definition: network.h:73
double TFloat
Definition: tesstypes.h:39
std::string spec() const override
bool Is2D() const
Definition: lstm.h:119
bool Backward(bool debug, const NetworkIO &fwd_deltas, NetworkScratch *scratch, NetworkIO *back_deltas) override
Definition: lstm.cpp:507
TESS_API LSTM(const std::string &name, int num_inputs, int num_states, int num_outputs, bool two_dimensional, NetworkType type)
Definition: lstm.cpp:101
~LSTM() override
Definition: lstm.cpp:126
int InitWeights(float range, TRand *randomizer) override
Definition: lstm.cpp:175
void DebugWeights() override
Definition: lstm.cpp:215
int RemapOutputs(int old_no, const std::vector< int > &code_map) override
Definition: lstm.cpp:193
void CountAlternators(const Network &other, TFloat *same, TFloat *changed) const override
Definition: lstm.cpp:761
bool DeSerialize(TFile *fp) override
Definition: lstm.cpp:253
std::string spec() const override
Definition: lstm.h:58
bool Serialize(TFile *fp) const override
Definition: lstm.cpp:230
void ConvertToInt() override
Definition: lstm.cpp:202
void SetEnableTraining(TrainingState state) override
Definition: lstm.cpp:146
void Forward(bool debug, const NetworkIO &input, const TransposedArray *input_transpose, NetworkScratch *scratch, NetworkIO *output) override
Definition: lstm.cpp:291
void Update(float learning_rate, float momentum, float adam_beta, int num_samples) override
Definition: lstm.cpp:740
StaticShape OutputShape(const StaticShape &input_shape) const override
Definition: lstm.cpp:132
NetworkType type_
Definition: network.h:300
const std::string & name() const
Definition: network.h:140
NetworkType type() const
Definition: network.h:110
#define TESS_API
Definition: export.h:32