tesseract v5.3.3.20231005
plumbing.cpp
Go to the documentation of this file.
1
2// File: plumbing.cpp
3// Description: Base class for networks that organize other networks
4// eg series or parallel.
5// Author: Ray Smith
6//
7// (C) Copyright 2014, Google Inc.
8// Licensed under the Apache License, Version 2.0 (the "License");
9// you may not use this file except in compliance with the License.
10// You may obtain a copy of the License at
11// http://www.apache.org/licenses/LICENSE-2.0
12// Unless required by applicable law or agreed to in writing, software
13// distributed under the License is distributed on an "AS IS" BASIS,
14// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15// See the License for the specific language governing permissions and
16// limitations under the License.
18
19#include "plumbing.h"
20
21namespace tesseract {
22
23// ni_ and no_ will be set by AddToStack.
24Plumbing::Plumbing(const std::string &name) : Network(NT_PARALLEL, name, 0, 0) {}
25
26// Suspends/Enables training by setting the training_ flag. Serialize and
27// DeSerialize only operate on the run-time data if state is false.
30 for (auto &i : stack_) {
31 i->SetEnableTraining(state);
32 }
33}
34
35// Sets flags that control the action of the network. See NetworkFlags enum
36// for bit values.
37void Plumbing::SetNetworkFlags(uint32_t flags) {
39 for (auto &i : stack_) {
40 i->SetNetworkFlags(flags);
41 }
42}
43
44// Sets up the network for training. Initializes weights using weights of
45// scale `range` picked according to the random number generator `randomizer`.
46// Note that randomizer is a borrowed pointer that should outlive the network
47// and should not be deleted by any of the networks.
48// Returns the number of weights initialized.
49int Plumbing::InitWeights(float range, TRand *randomizer) {
50 num_weights_ = 0;
51 for (auto &i : stack_) {
52 num_weights_ += i->InitWeights(range, randomizer);
53 }
54 return num_weights_;
55}
56
57// Recursively searches the network for softmaxes with old_no outputs,
58// and remaps their outputs according to code_map. See network.h for details.
59int Plumbing::RemapOutputs(int old_no, const std::vector<int> &code_map) {
60 num_weights_ = 0;
61 for (auto &i : stack_) {
62 num_weights_ += i->RemapOutputs(old_no, code_map);
63 }
64 return num_weights_;
65}
66
67// Converts a float network to an int network.
69 for (auto &i : stack_) {
70 i->ConvertToInt();
71 }
72}
73
74// Provides a pointer to a TRand for any networks that care to use it.
75// Note that randomizer is a borrowed pointer that should outlive the network
76// and should not be deleted by any of the networks.
77void Plumbing::SetRandomizer(TRand *randomizer) {
78 for (auto &i : stack_) {
79 i->SetRandomizer(randomizer);
80 }
81}
82
83// Adds the given network to the stack.
85 if (stack_.empty()) {
86 ni_ = network->NumInputs();
87 no_ = network->NumOutputs();
88 } else if (type_ == NT_SERIES) {
89 // ni is input of first, no output of last, others match output to input.
90 ASSERT_HOST(no_ == network->NumInputs());
91 no_ = network->NumOutputs();
92 } else {
93 // All parallel types. Output is sum of outputs, inputs all match.
94 ASSERT_HOST(ni_ == network->NumInputs());
95 no_ += network->NumOutputs();
96 }
97 stack_.push_back(network);
98}
99
100// Sets needs_to_backprop_ to needs_backprop and calls on sub-network
101// according to needs_backprop || any weights in this network.
102bool Plumbing::SetupNeedsBackprop(bool needs_backprop) {
103 if (IsTraining()) {
104 needs_to_backprop_ = needs_backprop;
105 bool retval = needs_backprop;
106 for (auto &i : stack_) {
107 if (i->SetupNeedsBackprop(needs_backprop)) {
108 retval = true;
109 }
110 }
111 return retval;
112 }
113 // Frozen networks don't do backprop.
114 needs_to_backprop_ = false;
115 return false;
116}
117
118// Returns an integer reduction factor that the network applies to the
119// time sequence. Assumes that any 2-d is already eliminated. Used for
120// scaling bounding boxes of truth data.
121// WARNING: if GlobalMinimax is used to vary the scale, this will return
122// the last used scale factor. Call it before any forward, and it will return
123// the minimum scale factor of the paths through the GlobalMinimax.
125 return stack_[0]->XScaleFactor();
126}
127
128// Provides the (minimum) x scale factor to the network (of interest only to
129// input units) so they can determine how to scale bounding boxes.
131 for (auto &i : stack_) {
132 i->CacheXScaleFactor(factor);
133 }
134}
135
136// Provides debug output on the weights.
138 for (auto &i : stack_) {
139 i->DebugWeights();
140 }
141}
142
143// Returns a set of strings representing the layer-ids of all layers below.
144void Plumbing::EnumerateLayers(const std::string *prefix, std::vector<std::string> &layers) const {
145 for (size_t i = 0; i < stack_.size(); ++i) {
146 std::string layer_name;
147 if (prefix) {
148 layer_name = *prefix;
149 }
150 layer_name += ":" + std::to_string(i);
151 if (stack_[i]->IsPlumbingType()) {
152 auto *plumbing = static_cast<Plumbing *>(stack_[i]);
153 plumbing->EnumerateLayers(&layer_name, layers);
154 } else {
155 layers.push_back(layer_name);
156 }
157 }
158}
159
160// Returns a pointer to the network layer corresponding to the given id.
161Network *Plumbing::GetLayer(const char *id) const {
162 char *next_id;
163 int index = strtol(id, &next_id, 10);
164 if (index < 0 || static_cast<unsigned>(index) >= stack_.size()) {
165 return nullptr;
166 }
167 if (stack_[index]->IsPlumbingType()) {
168 auto *plumbing = static_cast<Plumbing *>(stack_[index]);
169 ASSERT_HOST(*next_id == ':');
170 return plumbing->GetLayer(next_id + 1);
171 }
172 return stack_[index];
173}
174
175// Returns a pointer to the learning rate for the given layer id.
176float *Plumbing::LayerLearningRatePtr(const char *id) {
177 char *next_id;
178 int index = strtol(id, &next_id, 10);
179 if (index < 0 || static_cast<unsigned>(index) >= stack_.size()) {
180 return nullptr;
181 }
182 if (stack_[index]->IsPlumbingType()) {
183 auto *plumbing = static_cast<Plumbing *>(stack_[index]);
184 ASSERT_HOST(*next_id == ':');
185 return plumbing->LayerLearningRatePtr(next_id + 1);
186 }
187 if (static_cast<unsigned>(index) >= learning_rates_.size()) {
188 return nullptr;
189 }
190 return &learning_rates_[index];
191}
192
193// Writes to the given file. Returns false in case of error.
194bool Plumbing::Serialize(TFile *fp) const {
195 if (!Network::Serialize(fp)) {
196 return false;
197 }
198 uint32_t size = stack_.size();
199 // Can't use PointerVector::Serialize here as we need a special DeSerialize.
200 if (!fp->Serialize(&size)) {
201 return false;
202 }
203 for (uint32_t i = 0; i < size; ++i) {
204 if (!stack_[i]->Serialize(fp)) {
205 return false;
206 }
207 }
209 return false;
210 }
211 return true;
212}
213
214// Reads from the given file. Returns false in case of error.
216 for (auto data : stack_) {
217 delete data;
218 }
219 stack_.clear();
220 no_ = 0; // We will be modifying this as we AddToStack.
221 uint32_t size;
222 if (!fp->DeSerialize(&size)) {
223 return false;
224 }
225 for (uint32_t i = 0; i < size; ++i) {
226 Network *network = CreateFromFile(fp);
227 if (network == nullptr) {
228 return false;
229 }
230 AddToStack(network);
231 }
233 return false;
234 }
235 return true;
236}
237
238// Updates the weights using the given learning rate, momentum and adam_beta.
239// num_samples is used in the adam computation iff use_adam_ is true.
240void Plumbing::Update(float learning_rate, float momentum, float adam_beta, int num_samples) {
241 for (size_t i = 0; i < stack_.size(); ++i) {
243 if (i < learning_rates_.size()) {
244 learning_rate = learning_rates_[i];
245 } else {
246 learning_rates_.push_back(learning_rate);
247 }
248 }
249 if (stack_[i]->IsTraining()) {
250 stack_[i]->Update(learning_rate, momentum, adam_beta, num_samples);
251 }
252 }
253}
254
255// Sums the products of weight updates in *this and other, splitting into
256// positive (same direction) in *same and negative (different direction) in
257// *changed.
258void Plumbing::CountAlternators(const Network &other, TFloat *same, TFloat *changed) const {
259 ASSERT_HOST(other.type() == type_);
260 const auto *plumbing = static_cast<const Plumbing *>(&other);
261 ASSERT_HOST(plumbing->stack_.size() == stack_.size());
262 for (size_t i = 0; i < stack_.size(); ++i) {
263 stack_[i]->CountAlternators(*plumbing->stack_[i], same, changed);
264 }
265}
266
267} // namespace tesseract.
#define ASSERT_HOST(x)
Definition: errcode.h:54
TrainingState
Definition: network.h:90
@ NT_PARALLEL
Definition: network.h:47
@ NT_SERIES
Definition: network.h:52
double TFloat
Definition: tesstypes.h:39
@ NF_LAYER_SPECIFIC_LR
Definition: network.h:85
bool DeSerialize(std::string &data)
Definition: serialis.cpp:94
bool Serialize(const std::string &data)
Definition: serialis.cpp:107
int32_t network_flags_
Definition: network.h:303
NetworkType type_
Definition: network.h:300
int NumOutputs() const
Definition: network.h:125
bool needs_to_backprop_
Definition: network.h:302
virtual void SetEnableTraining(TrainingState state)
Definition: network.cpp:113
static Network * CreateFromFile(TFile *fp)
Definition: network.cpp:217
bool IsTraining() const
Definition: network.h:113
virtual bool Serialize(TFile *fp) const
Definition: network.cpp:158
int NumInputs() const
Definition: network.h:122
int32_t num_weights_
Definition: network.h:306
virtual void SetNetworkFlags(uint32_t flags)
Definition: network.cpp:131
NetworkType type() const
Definition: network.h:110
void SetEnableTraining(TrainingState state) override
Definition: plumbing.cpp:28
bool DeSerialize(TFile *fp) override
Definition: plumbing.cpp:215
void CacheXScaleFactor(int factor) override
Definition: plumbing.cpp:130
int XScaleFactor() const override
Definition: plumbing.cpp:124
void ConvertToInt() override
Definition: plumbing.cpp:68
void EnumerateLayers(const std::string *prefix, std::vector< std::string > &layers) const
Definition: plumbing.cpp:144
bool SetupNeedsBackprop(bool needs_backprop) override
Definition: plumbing.cpp:102
int InitWeights(float range, TRand *randomizer) override
Definition: plumbing.cpp:49
void SetRandomizer(TRand *randomizer) override
Definition: plumbing.cpp:77
virtual void AddToStack(Network *network)
Definition: plumbing.cpp:84
Plumbing(const std::string &name)
Definition: plumbing.cpp:24
int RemapOutputs(int old_no, const std::vector< int > &code_map) override
Definition: plumbing.cpp:59
float * LayerLearningRatePtr(const char *id)
Definition: plumbing.cpp:176
void SetNetworkFlags(uint32_t flags) override
Definition: plumbing.cpp:37
void DebugWeights() override
Definition: plumbing.cpp:137
std::vector< Network * > stack_
Definition: plumbing.h:147
void CountAlternators(const Network &other, TFloat *same, TFloat *changed) const override
Definition: plumbing.cpp:258
Network * GetLayer(const char *id) const
Definition: plumbing.cpp:161
bool Serialize(TFile *fp) const override
Definition: plumbing.cpp:194
std::vector< float > learning_rates_
Definition: plumbing.h:150
bool IsPlumbingType() const override
Definition: plumbing.h:48
void Update(float learning_rate, float momentum, float adam_beta, int num_samples) override
Definition: plumbing.cpp:240