tesseract v5.3.3.20231005
parallel.cpp
Go to the documentation of this file.
1
2// File: parallel.cpp
3// Description: Runs networks in parallel on the same input.
4// Author: Ray Smith
5//
6// (C) Copyright 2013, Google Inc.
7// Licensed under the Apache License, Version 2.0 (the "License");
8// you may not use this file except in compliance with the License.
9// You may obtain a copy of the License at
10// http://www.apache.org/licenses/LICENSE-2.0
11// Unless required by applicable law or agreed to in writing, software
12// distributed under the License is distributed on an "AS IS" BASIS,
13// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14// See the License for the specific language governing permissions and
15// limitations under the License.
17
18#ifdef HAVE_CONFIG_H
19# include "config_auto.h"
20#endif
21
22#include "parallel.h"
23
24#ifdef _OPENMP
25# include <omp.h>
26#endif
27
28#include "functions.h" // For conditional undef of _OPENMP.
29#include "networkscratch.h"
30
31namespace tesseract {
32
33// ni_ and no_ will be set by AddToStack.
34Parallel::Parallel(const char *name, NetworkType type) : Plumbing(name) {
35 type_ = type;
36}
37
38// Returns the shape output from the network given an input shape (which may
39// be partially unknown ie zero).
41 StaticShape result = stack_[0]->OutputShape(input_shape);
42 int stack_size = stack_.size();
43 for (int i = 1; i < stack_size; ++i) {
44 StaticShape shape = stack_[i]->OutputShape(input_shape);
45 result.set_depth(result.depth() + shape.depth());
46 }
47 return result;
48}
49
50// Runs forward propagation of activations on the input line.
51// See NetworkCpp for a detailed discussion of the arguments.
52void Parallel::Forward(bool debug, const NetworkIO &input, const TransposedArray *input_transpose,
53 NetworkScratch *scratch, NetworkIO *output) {
54 bool parallel_debug = false;
55 // If this parallel is a replicator of convolvers, or holds a 1-d LSTM pair,
56 // or a 2-d LSTM quad, do debug locally, and don't pass the flag on.
57 if (debug && type_ != NT_PARALLEL) {
58 parallel_debug = true;
59 debug = false;
60 }
61 int stack_size = stack_.size();
62 if (type_ == NT_PAR_2D_LSTM) {
63 // Special case, run parallel in parallel.
64 std::vector<NetworkScratch::IO> results(stack_size);
65 for (int i = 0; i < stack_size; ++i) {
66 results[i].Resize(input, stack_[i]->NumOutputs(), scratch);
67 }
68#ifdef _OPENMP
69# pragma omp parallel for num_threads(stack_size)
70#endif
71 for (int i = 0; i < stack_size; ++i) {
72 stack_[i]->Forward(debug, input, nullptr, scratch, results[i]);
73 }
74 // Now pack all the results (serially) into the output.
75 int out_offset = 0;
76 output->Resize(*results[0], NumOutputs());
77 for (int i = 0; i < stack_size; ++i) {
78 out_offset = output->CopyPacking(*results[i], out_offset);
79 }
80 } else {
81 // Revolving intermediate result.
82 NetworkScratch::IO result(input, scratch);
83 // Source for divided replicated.
84 NetworkScratch::IO source_part;
85 TransposedArray *src_transpose = nullptr;
86 if (IsTraining() && type_ == NT_REPLICATED) {
87 // Make a transposed copy of the input.
88 input.Transpose(&transposed_input_);
89 src_transpose = &transposed_input_;
90 }
91 // Run each network, putting the outputs into result.
92 int out_offset = 0;
93 for (int i = 0; i < stack_size; ++i) {
94 stack_[i]->Forward(debug, input, src_transpose, scratch, result);
95 // All networks must have the same output width
96 if (i == 0) {
97 output->Resize(*result, NumOutputs());
98 } else {
99 ASSERT_HOST(result->Width() == output->Width());
100 }
101 out_offset = output->CopyPacking(*result, out_offset);
102 }
103 }
104#ifndef GRAPHICS_DISABLED
105 if (parallel_debug) {
107 }
108#endif
109}
110
111// Runs backward propagation of errors on the deltas line.
112// See NetworkCpp for a detailed discussion of the arguments.
113bool Parallel::Backward(bool debug, const NetworkIO &fwd_deltas, NetworkScratch *scratch,
114 NetworkIO *back_deltas) {
115 // If this parallel is a replicator of convolvers, or holds a 1-d LSTM pair,
116 // or a 2-d LSTM quad, do debug locally, and don't pass the flag on.
117 if (debug && type_ != NT_PARALLEL) {
118#ifndef GRAPHICS_DISABLED
119 DisplayBackward(fwd_deltas);
120#endif
121 debug = false;
122 }
123 auto stack_size = stack_.size();
124 if (type_ == NT_PAR_2D_LSTM) {
125 // Special case, run parallel in parallel.
126 std::vector<NetworkScratch::IO> in_deltas(stack_size);
127 std::vector<NetworkScratch::IO> out_deltas(stack_size);
128 // Split the forward deltas for each stack element.
129 int feature_offset = 0;
130 for (unsigned i = 0; i < stack_.size(); ++i) {
131 int num_features = stack_[i]->NumOutputs();
132 in_deltas[i].Resize(fwd_deltas, num_features, scratch);
133 out_deltas[i].Resize(fwd_deltas, stack_[i]->NumInputs(), scratch);
134 in_deltas[i]->CopyUnpacking(fwd_deltas, feature_offset, num_features);
135 feature_offset += num_features;
136 }
137#ifdef _OPENMP
138# pragma omp parallel for num_threads(stack_size)
139#endif
140 for (unsigned i = 0; i < stack_size; ++i) {
141 stack_[i]->Backward(debug, *in_deltas[i], scratch, i == 0 ? back_deltas : out_deltas[i]);
142 }
143 if (needs_to_backprop_) {
144 for (unsigned i = 1; i < stack_size; ++i) {
145 back_deltas->AddAllToFloat(*out_deltas[i]);
146 }
147 }
148 } else {
149 // Revolving partial deltas.
150 NetworkScratch::IO in_deltas(fwd_deltas, scratch);
151 // The sum of deltas from different sources, which will eventually go into
152 // back_deltas.
153 NetworkScratch::IO out_deltas;
154 int feature_offset = 0;
155 for (unsigned i = 0; i < stack_.size(); ++i) {
156 int num_features = stack_[i]->NumOutputs();
157 in_deltas->CopyUnpacking(fwd_deltas, feature_offset, num_features);
158 feature_offset += num_features;
159 if (stack_[i]->Backward(debug, *in_deltas, scratch, back_deltas)) {
160 if (i == 0) {
161 out_deltas.ResizeFloat(*back_deltas, back_deltas->NumFeatures(), scratch);
162 out_deltas->CopyAll(*back_deltas);
163 } else if (back_deltas->NumFeatures() == out_deltas->NumFeatures()) {
164 // Widths are allowed to be different going back, as we may have
165 // input nets, so only accumulate the deltas if the widths are the
166 // same.
167 out_deltas->AddAllToFloat(*back_deltas);
168 }
169 }
170 }
171 if (needs_to_backprop_) {
172 back_deltas->CopyAll(*out_deltas);
173 }
174 }
175 if (needs_to_backprop_) {
176 back_deltas->ScaleFloatBy(1.0f / stack_size);
177 }
178 return needs_to_backprop_;
179}
180
181} // namespace tesseract.
#define ASSERT_HOST(x)
Definition: errcode.h:54
NetworkType
Definition: network.h:41
@ NT_PARALLEL
Definition: network.h:47
@ NT_PAR_2D_LSTM
Definition: network.h:51
@ NT_REPLICATED
Definition: network.h:48
type
Definition: upload.py:458
NetworkType type_
Definition: network.h:300
int NumOutputs() const
Definition: network.h:125
bool needs_to_backprop_
Definition: network.h:302
void DisplayForward(const NetworkIO &matrix)
Definition: network.cpp:333
void DisplayBackward(const NetworkIO &matrix)
Definition: network.cpp:341
bool IsTraining() const
Definition: network.h:113
int NumInputs() const
Definition: network.h:122
NetworkType type() const
Definition: network.h:110
void ScaleFloatBy(float factor)
Definition: networkio.h:234
int Width() const
Definition: networkio.h:102
void Transpose(TransposedArray *dest) const
Definition: networkio.cpp:971
void CopyUnpacking(const NetworkIO &src, int feature_offset, int num_features)
Definition: networkio.cpp:955
void AddAllToFloat(const NetworkIO &src)
Definition: networkio.cpp:831
void CopyAll(const NetworkIO &src)
Definition: networkio.cpp:825
int NumFeatures() const
Definition: networkio.h:106
void ResizeFloat(const NetworkIO &src, int num_features, NetworkScratch *scratch)
void Forward(bool debug, const NetworkIO &input, const TransposedArray *input_transpose, NetworkScratch *scratch, NetworkIO *output) override
Definition: parallel.cpp:52
bool Backward(bool debug, const NetworkIO &fwd_deltas, NetworkScratch *scratch, NetworkIO *back_deltas) override
Definition: parallel.cpp:113
TESS_API Parallel(const char *name, NetworkType type)
Definition: parallel.cpp:34
StaticShape OutputShape(const StaticShape &input_shape) const override
Definition: parallel.cpp:40
std::vector< Network * > stack_
Definition: plumbing.h:147
void set_depth(int value)
Definition: static_shape.h:62